mirror of https://github.com/injetlee/Python.git
既然加了自动登录,就再加个自动识别中文倒置验证码吧
parent
738e631a5f
commit
5d41622b7c
|
@ -0,0 +1,202 @@
|
|||
# -*- coding:UTF-8 -*-
|
||||
|
||||
import requests , time ,random
|
||||
import hmac ,json ,base64
|
||||
from bs4 import BeautifulSoup
|
||||
from hashlib import sha1
|
||||
import TencentYoutuyun
|
||||
from PIL import Image
|
||||
import uuid
|
||||
|
||||
|
||||
|
||||
def recognition_captcha(data):
|
||||
''' 识别验证码 '''
|
||||
|
||||
file_id = str(uuid.uuid1())
|
||||
filename = 'captcha_'+ file_id +'.gif'
|
||||
filename_png = 'captcha_'+ file_id +'.png'
|
||||
|
||||
if(data is None):
|
||||
return
|
||||
data = base64.b64decode(data.encode('utf-8'))
|
||||
with open( filename ,'wb') as fb:
|
||||
fb.write( data )
|
||||
|
||||
appid = 'appid' # 接入优图服务,注册账号获取
|
||||
secret_id = 'secret_id'
|
||||
secret_key = 'secret_key'
|
||||
userid= 'userid'
|
||||
end_point = TencentYoutuyun.conf.API_YOUTU_END_POINT
|
||||
|
||||
youtu = TencentYoutuyun.YouTu(appid, secret_id, secret_key, userid, end_point) # 初始化
|
||||
|
||||
# 拿到的是gif格式,而优图只支持 JPG PNG BMP 其中之一,这时我们需要 pip install Pillow 来转换格式
|
||||
im = Image.open( filename)
|
||||
im.save( filename_png ,"png")
|
||||
im.close()
|
||||
|
||||
result = youtu.generalocr( filename_png , data_type = 0 , seq = '') # 0代表本地路径,1代表url
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def get_captcha(sessiona,headers):
|
||||
''' 获取验证码 '''
|
||||
|
||||
need_cap = False
|
||||
|
||||
while( need_cap is not True):
|
||||
try:
|
||||
sessiona.get('https://www.zhihu.com/signin',headers=headers) # 拿cookie:_xsrf
|
||||
resp2 = sessiona.get('https://www.zhihu.com/api/v3/oauth/captcha?lang=cn',headers=headers) # 拿cookie:capsion_ticket
|
||||
need_cap = json.loads(resp2.text)["show_captcha"] # {"show_captcha":false} 表示不用验证码
|
||||
time.sleep( 0.5 + random.randint(1,9)/10 )
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
try:
|
||||
resp3 = sessiona.put('https://www.zhihu.com/api/v3/oauth/captcha?lang=cn',headers=headers) # 拿到验证码数据,注意是put
|
||||
img_data = json.loads(resp3.text)["img_base64"]
|
||||
except Exception:
|
||||
return
|
||||
|
||||
|
||||
return img_data
|
||||
|
||||
def create_point( point_data, confidence ):
|
||||
''' 获得点阵 '''
|
||||
|
||||
# 实际操作下,套路不深,x间隔25,y相同,共7个点 ,先模拟意思一下
|
||||
points = {1:[ 20.5,25.1875],2:[ 45.5,25.1875],3:[ 70.5,25.1875],4:[ 95.5,25.1875],5:[120.5,25.1875],6:[145.5,25.1875],7:[170.5,25.1875]}
|
||||
wi = 0
|
||||
input_points = []
|
||||
|
||||
for word in ( point_data['items'][0]['words'] ):
|
||||
wi = wi+1
|
||||
if( word['confidence'] < confidence ):
|
||||
try:
|
||||
input_points.append(points[wi]) # 倒置的中文,优图识别不出来,置信度会低于0.5
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
if( len(input_points) > 2 or len(input_points) == 0 ):
|
||||
return [] # 7个字中只有2个倒置中文的成功率高
|
||||
|
||||
result = {}
|
||||
result['img_size']=[200,44]
|
||||
result['input_points']=input_points
|
||||
result = json.dumps(result)
|
||||
print(result)
|
||||
return result
|
||||
|
||||
def bolting(k_low,k_hi,k3_confidence):
|
||||
''' 筛选把握大的进行验证 '''
|
||||
|
||||
start = time.time()
|
||||
|
||||
is_success = False
|
||||
while(is_success is not True):
|
||||
|
||||
points_len = 1
|
||||
angle = -20
|
||||
img_ko = []
|
||||
|
||||
while(points_len != 21 or angle < k_low or angle > k_hi ):
|
||||
img_data = get_captcha(sessiona,headers)
|
||||
img_ko = recognition_captcha(img_data)
|
||||
|
||||
## json.dumps 序列化时对中文默认使用的ascii编码.想输出真正的中文需要指定ensure_ascii=False
|
||||
# img_ko_json = json.dumps(img_ko , indent =2 ,ensure_ascii=False )
|
||||
# img_ko_json = img_ko_json.encode('raw_unicode_escape') ## 因为python3的原因,也因为优图自身的原因,此处要特殊处理
|
||||
|
||||
# with open( "json.txt" ,'wb') as fb:
|
||||
# fb.write( img_ko_json )
|
||||
|
||||
try:
|
||||
points_len = len(img_ko['items'][0]['itemstring'])
|
||||
angle = img_ko['angle']
|
||||
except Exception:
|
||||
points_len = 1
|
||||
angle = -20
|
||||
continue
|
||||
|
||||
# print(img_ko_json.decode('utf8')) ## stdout用的是utf8,需转码才能正常显示
|
||||
# print('-'*50)
|
||||
|
||||
input_text = create_point( img_ko ,k3_confidence )
|
||||
if(type(input_text) == type([])):
|
||||
continue
|
||||
|
||||
data = {
|
||||
"input_text":input_text
|
||||
}
|
||||
|
||||
# 提交过快会被拒绝,{"code":120005,"name":"ERR_VERIFY_CAPTCHA_TOO_QUICK"} ,假装思考5秒钟
|
||||
time.sleep( 4 + random.randint(1,9)/10 )
|
||||
try:
|
||||
resp5 = sessiona.post('https://www.zhihu.com/api/v3/oauth/captcha?lang=cn',data,headers=headers)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
print("angle: "+ str(angle) )
|
||||
print(BeautifulSoup(resp5.content ,'html.parser')) # 如果验证成功,会回应{"success":true},开心
|
||||
print('-'*50)
|
||||
try:
|
||||
is_success = json.loads(resp5.text)["success"]
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
end = time.time()
|
||||
|
||||
return end-start
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
sessiona = requests.Session()
|
||||
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0','authorization':'oauth c3cef7c66a1843f8b3a9e6a1e3160e20'}
|
||||
|
||||
k3_confidence = 0.71
|
||||
|
||||
'''
|
||||
# 可视化数据会被保存在云端供浏览
|
||||
# https://plot.ly/~weldon2010/4
|
||||
# 纯属学习,并未看出"角度"范围扩大对图像识别的影响,大部分时候60s内能搞定,说明优图还是很强悍的,识别速度也非常快
|
||||
'''
|
||||
runtime_list_x = []
|
||||
runtime_list_y = []
|
||||
nn = range(1,11) # 愿意的话搞多线程,1百万次更有意思
|
||||
|
||||
# 成功尝试100次,形成2维数据以热力图的方式展示
|
||||
for y in nn :
|
||||
for x in nn :
|
||||
runtime_list_x.append( bolting(-3,3,k3_confidence) )
|
||||
print( "y: " + str(runtime_list_y) )
|
||||
print( "x: " + str(runtime_list_x) )
|
||||
runtime_list_y.append(runtime_list_x.copy())
|
||||
runtime_list_x = []
|
||||
|
||||
print ("-"*30)
|
||||
print( runtime_list_y )
|
||||
print ("-"*30)
|
||||
|
||||
# pip install plotly 数据可视化
|
||||
import plotly
|
||||
import plotly.graph_objs as go
|
||||
plotly.tools.set_credentials_file(username='username', api_key='username') # 设置账号,去官网注册
|
||||
trace = go.Heatmap(z = runtime_list_y , x = [n for n in nn ] ,y =[n for n in nn ])
|
||||
data=[trace]
|
||||
plotly.plotly.plot(data, filename='weldon-time2-heatmap')
|
||||
|
||||
# 尝试后发现一个特点,基本都是1~2个倒置中文,这样我们可以借此提速
|
||||
# 角度范围放大,仅当识别出倒置中文为1~2个时才提交验证否则放弃继续寻找
|
||||
|
||||
### chcp 65001 (win下改变cmd字符集)
|
||||
### python c:\python34\image_recognition_zhihu.py
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue