734 lines
28 KiB
Python
734 lines
28 KiB
Python
# _*_ coding: utf-8 _*_
|
||
|
||
"""
|
||
python_lda.py by xianhu
|
||
"""
|
||
|
||
import os
|
||
import numpy
|
||
import logging
|
||
from collections import defaultdict
|
||
|
||
# 全局变量
|
||
MAX_ITER_NUM = 10000 # 最大迭代次数
|
||
VAR_NUM = 20 # 自动计算迭代次数时,计算方差的区间大小
|
||
|
||
|
||
class BiDictionary(object):
|
||
"""
|
||
定义双向字典,通过key可以得到value,通过value也可以得到key
|
||
"""
|
||
|
||
def __init__(self):
|
||
"""
|
||
:key: 双向字典初始化
|
||
"""
|
||
self.dict = {} # 正向的数据字典,其key为self的key
|
||
self.dict_reversed = {} # 反向的数据字典,其key为self的value
|
||
return
|
||
|
||
def __len__(self):
|
||
"""
|
||
:key: 获取双向字典的长度
|
||
"""
|
||
return len(self.dict)
|
||
|
||
def __str__(self):
|
||
"""
|
||
:key: 将双向字典转化为字符串对象
|
||
"""
|
||
str_list = ["%s\t%s" % (key, self.dict[key]) for key in self.dict]
|
||
return "\n".join(str_list)
|
||
|
||
def clear(self):
|
||
"""
|
||
:key: 清空双向字典对象
|
||
"""
|
||
self.dict.clear()
|
||
self.dict_reversed.clear()
|
||
return
|
||
|
||
def add_key_value(self, key, value):
|
||
"""
|
||
:key: 更新双向字典,增加一项
|
||
"""
|
||
self.dict[key] = value
|
||
self.dict_reversed[value] = key
|
||
return
|
||
|
||
def remove_key_value(self, key, value):
|
||
"""
|
||
:key: 更新双向字典,删除一项
|
||
"""
|
||
if key in self.dict:
|
||
del self.dict[key]
|
||
del self.dict_reversed[value]
|
||
return
|
||
|
||
def get_value(self, key, default=None):
|
||
"""
|
||
:key: 通过key获取value,不存在返回default
|
||
"""
|
||
return self.dict.get(key, default)
|
||
|
||
def get_key(self, value, default=None):
|
||
"""
|
||
:key: 通过value获取key,不存在返回default
|
||
"""
|
||
return self.dict_reversed.get(value, default)
|
||
|
||
def contains_key(self, key):
|
||
"""
|
||
:key: 判断是否存在key值
|
||
"""
|
||
return key in self.dict
|
||
|
||
def contains_value(self, value):
|
||
"""
|
||
:key: 判断是否存在value值
|
||
"""
|
||
return value in self.dict_reversed
|
||
|
||
def keys(self):
|
||
"""
|
||
:key: 得到双向字典全部的keys
|
||
"""
|
||
return self.dict.keys()
|
||
|
||
def values(self):
|
||
"""
|
||
:key: 得到双向字典全部的values
|
||
"""
|
||
return self.dict_reversed.keys()
|
||
|
||
def items(self):
|
||
"""
|
||
:key: 得到双向字典全部的items
|
||
"""
|
||
return self.dict.items()
|
||
|
||
|
||
class CorpusSet(object):
|
||
"""
|
||
定义语料集类,作为LdaBase的基类
|
||
"""
|
||
|
||
def __init__(self):
|
||
"""
|
||
:key: 初始化函数
|
||
"""
|
||
# 定义关于word的变量
|
||
self.local_bi = BiDictionary() # id和word之间的本地双向字典,key为id,value为word
|
||
self.words_count = 0 # 数据集中word的数量(排重之前的)
|
||
self.V = 0 # 数据集中word的数量(排重之后的)
|
||
|
||
# 定义关于article的变量
|
||
self.artids_list = [] # 全部article的id的列表,按照数据读取的顺序存储
|
||
self.arts_Z = [] # 全部article中所有词的id信息,维数为 M * art.length()
|
||
self.M = 0 # 数据集中article的数量
|
||
|
||
# 定义推断中用到的变量(可能为空)
|
||
self.global_bi = None # id和word之间的全局双向字典,key为id,value为word
|
||
self.local_2_global = {} # 一个字典,local字典和global字典之间的对应关系
|
||
return
|
||
|
||
def init_corpus_with_file(self, file_name):
|
||
"""
|
||
:key: 利用数据文件初始化语料集数据。文件每一行的数据格式: id[tab]word1 word2 word3......
|
||
"""
|
||
with open(file_name, "r", encoding="utf-8") as file_iter:
|
||
self.init_corpus_with_articles(file_iter)
|
||
return
|
||
|
||
def init_corpus_with_articles(self, article_list):
|
||
"""
|
||
:key: 利用article的列表初始化语料集。每一篇article的格式为: id[tab]word1 word2 word3......
|
||
"""
|
||
# 清理数据--word数据
|
||
self.local_bi.clear()
|
||
self.words_count = 0
|
||
self.V = 0
|
||
|
||
# 清理数据--article数据
|
||
self.artids_list.clear()
|
||
self.arts_Z.clear()
|
||
self.M = 0
|
||
|
||
# 清理数据--清理local到global的映射关系
|
||
self.local_2_global.clear()
|
||
|
||
# 读取article数据
|
||
for line in article_list:
|
||
frags = line.strip().split()
|
||
if len(frags) < 2:
|
||
continue
|
||
|
||
# 获取article的id
|
||
art_id = frags[0].strip()
|
||
|
||
# 获取word的id
|
||
art_wordid_list = []
|
||
for word in [w.strip() for w in frags[1:] if w.strip()]:
|
||
local_id = self.local_bi.get_key(word) if self.local_bi.contains_value(word) else len(self.local_bi)
|
||
|
||
# 这里的self.global_bi为None和为空是有区别的
|
||
if self.global_bi is None:
|
||
# 更新id信息
|
||
self.local_bi.add_key_value(local_id, word)
|
||
art_wordid_list.append(local_id)
|
||
else:
|
||
if self.global_bi.contains_value(word):
|
||
# 更新id信息
|
||
self.local_bi.add_key_value(local_id, word)
|
||
art_wordid_list.append(local_id)
|
||
|
||
# 更新local_2_global
|
||
self.local_2_global[local_id] = self.global_bi.get_key(word)
|
||
|
||
# 更新类变量: 必须article中word的数量大于0
|
||
if len(art_wordid_list) > 0:
|
||
self.words_count += len(art_wordid_list)
|
||
self.artids_list.append(art_id)
|
||
self.arts_Z.append(art_wordid_list)
|
||
|
||
# 做相关初始计算--word相关
|
||
self.V = len(self.local_bi)
|
||
logging.debug("words number: " + str(self.V) + ", " + str(self.words_count))
|
||
|
||
# 做相关初始计算--article相关
|
||
self.M = len(self.artids_list)
|
||
logging.debug("articles number: " + str(self.M))
|
||
return
|
||
|
||
def save_wordmap(self, file_name):
|
||
"""
|
||
:key: 保存word字典,即self.local_bi的数据
|
||
"""
|
||
with open(file_name, "w", encoding="utf-8") as f_save:
|
||
f_save.write(str(self.local_bi))
|
||
return
|
||
|
||
def load_wordmap(self, file_name):
|
||
"""
|
||
:key: 加载word字典,即加载self.local_bi的数据
|
||
"""
|
||
self.local_bi.clear()
|
||
with open(file_name, "r", encoding="utf-8") as f_load:
|
||
for _id, _word in [line.strip().split() for line in f_load if line.strip()]:
|
||
self.local_bi.add_key_value(int(_id), _word.strip())
|
||
self.V = len(self.local_bi)
|
||
return
|
||
|
||
|
||
class LdaBase(CorpusSet):
|
||
"""
|
||
LDA模型的基类,相关说明:
|
||
》article的下标范围为[0, self.M), 下标为 m
|
||
》wordid的下标范围为[0, self.V), 下标为 w
|
||
》topic的下标范围为[0, self.K), 下标为 k 或 topic
|
||
》article中word的下标范围为[0, article.size()), 下标为 n
|
||
"""
|
||
|
||
def __init__(self):
|
||
"""
|
||
:key: 初始化函数
|
||
"""
|
||
CorpusSet.__init__(self)
|
||
|
||
# 基础变量--1
|
||
self.dir_path = "" # 文件夹路径,用于存放LDA运行的数据、中间结果等
|
||
self.model_name = "" # LDA训练或推断的模型名称,也用于读取训练的结果
|
||
self.current_iter = 0 # LDA训练或推断的模型已经迭代的次数,用于继续模型训练过程
|
||
self.iters_num = 0 # LDA训练或推断过程中Gibbs抽样迭代的总次数,整数值或者"auto"
|
||
self.topics_num = 0 # LDA训练或推断过程中的topic的数量,即self.K值
|
||
self.K = 0 # LDA训练或推断过程中的topic的数量,即self.topics_num值
|
||
self.twords_num = 0 # LDA训练或推断结束后输出与每个topic相关的word的个数
|
||
|
||
# 基础变量--2
|
||
self.alpha = numpy.zeros(self.K) # 超参数alpha,K维的float值,默认为50/K
|
||
self.beta = numpy.zeros(self.V) # 超参数beta,V维的float值,默认为0.01
|
||
|
||
# 基础变量--3
|
||
self.Z = [] # 所有word的topic信息,即Z(m, n),维数为 M * article.size()
|
||
|
||
# 统计计数(可由self.Z计算得到)
|
||
self.nd = numpy.zeros((self.M, self.K)) # nd[m, k]用于保存第m篇article中第k个topic产生的词的个数,其维数为 M * K
|
||
self.ndsum = numpy.zeros((self.M, 1)) # ndsum[m, 0]用于保存第m篇article的总词数,维数为 M * 1
|
||
self.nw = numpy.zeros((self.K, self.V)) # nw[k, w]用于保存第k个topic产生的词中第w个词的数量,其维数为 K * V
|
||
self.nwsum = numpy.zeros((self.K, 1)) # nwsum[k, 0]用于保存第k个topic产生的词的总数,维数为 K * 1
|
||
|
||
# 多项式分布参数变量
|
||
self.theta = numpy.zeros((self.M, self.K)) # Doc-Topic多项式分布的参数,维数为 M * K,由alpha值影响
|
||
self.phi = numpy.zeros((self.K, self.V)) # Topic-Word多项式分布的参数,维数为 K * V,由beta值影响
|
||
|
||
# 辅助变量,目的是提高算法执行效率
|
||
self.sum_alpha = 0.0 # 超参数alpha的和
|
||
self.sum_beta = 0.0 # 超参数beta的和
|
||
|
||
# 先验知识,格式为{word_id: [k1, k2, ...], ...}
|
||
self.prior_word = defaultdict(list)
|
||
|
||
# 推断时需要的训练模型
|
||
self.train_model = None
|
||
return
|
||
|
||
# --------------------------------------------------辅助函数---------------------------------------------------------
|
||
def init_statistics_document(self):
|
||
"""
|
||
:key: 初始化关于article的统计计数。先决条件: self.M, self.K, self.Z
|
||
"""
|
||
assert self.M > 0 and self.K > 0 and self.Z
|
||
|
||
# 统计计数初始化
|
||
self.nd = numpy.zeros((self.M, self.K), dtype=numpy.int)
|
||
self.ndsum = numpy.zeros((self.M, 1), dtype=numpy.int)
|
||
|
||
# 根据self.Z进行更新,更新self.nd[m, k]和self.ndsum[m, 0]
|
||
for m in range(self.M):
|
||
for k in self.Z[m]:
|
||
self.nd[m, k] += 1
|
||
self.ndsum[m, 0] = len(self.Z[m])
|
||
return
|
||
|
||
def init_statistics_word(self):
|
||
"""
|
||
:key: 初始化关于word的统计计数。先决条件: self.V, self.K, self.Z, self.arts_Z
|
||
"""
|
||
assert self.V > 0 and self.K > 0 and self.Z and self.arts_Z
|
||
|
||
# 统计计数初始化
|
||
self.nw = numpy.zeros((self.K, self.V), dtype=numpy.int)
|
||
self.nwsum = numpy.zeros((self.K, 1), dtype=numpy.int)
|
||
|
||
# 根据self.Z进行更新,更新self.nw[k, w]和self.nwsum[k, 0]
|
||
for m in range(self.M):
|
||
for k, w in zip(self.Z[m], self.arts_Z[m]):
|
||
self.nw[k, w] += 1
|
||
self.nwsum[k, 0] += 1
|
||
return
|
||
|
||
def init_statistics(self):
|
||
"""
|
||
:key: 初始化全部的统计计数。上两个函数的综合函数。
|
||
"""
|
||
self.init_statistics_document()
|
||
self.init_statistics_word()
|
||
return
|
||
|
||
def sum_alpha_beta(self):
|
||
"""
|
||
:key: 计算alpha、beta的和
|
||
"""
|
||
self.sum_alpha = self.alpha.sum()
|
||
self.sum_beta = self.beta.sum()
|
||
return
|
||
|
||
def calculate_theta(self):
|
||
"""
|
||
:key: 初始化并计算模型的theta值(M*K),用到alpha值
|
||
"""
|
||
assert self.sum_alpha > 0
|
||
self.theta = (self.nd + self.alpha) / (self.ndsum + self.sum_alpha)
|
||
return
|
||
|
||
def calculate_phi(self):
|
||
"""
|
||
:key: 初始化并计算模型的phi值(K*V),用到beta值
|
||
"""
|
||
assert self.sum_beta > 0
|
||
self.phi = (self.nw + self.beta) / (self.nwsum + self.sum_beta)
|
||
return
|
||
|
||
# ---------------------------------------------计算Perplexity值------------------------------------------------------
|
||
def calculate_perplexity(self):
|
||
"""
|
||
:key: 计算Perplexity值,并返回
|
||
"""
|
||
# 计算theta和phi值
|
||
self.calculate_theta()
|
||
self.calculate_phi()
|
||
|
||
# 开始计算
|
||
preplexity = 0.0
|
||
for m in range(self.M):
|
||
for w in self.arts_Z[m]:
|
||
preplexity += numpy.log(numpy.sum(self.theta[m] * self.phi[:, w]))
|
||
return numpy.exp(-(preplexity / self.words_count))
|
||
|
||
# --------------------------------------------------静态函数---------------------------------------------------------
|
||
@staticmethod
|
||
def multinomial_sample(pro_list):
|
||
"""
|
||
:key: 静态函数,多项式分布抽样,此时会改变pro_list的值
|
||
:param pro_list: [0.2, 0.7, 0.4, 0.1],此时说明返回下标1的可能性大,但也不绝对
|
||
"""
|
||
# 将pro_list进行累加
|
||
for k in range(1, len(pro_list)):
|
||
pro_list[k] += pro_list[k-1]
|
||
|
||
# 确定随机数 u 落在哪个下标值,此时的下标值即为抽取的类别(random.rand()返回: [0, 1.0))
|
||
u = numpy.random.rand() * pro_list[-1]
|
||
|
||
return_index = len(pro_list) - 1
|
||
for t in range(len(pro_list)):
|
||
if pro_list[t] > u:
|
||
return_index = t
|
||
break
|
||
return return_index
|
||
|
||
# ----------------------------------------------Gibbs抽样算法--------------------------------------------------------
|
||
def gibbs_sampling(self, is_calculate_preplexity):
|
||
"""
|
||
:key: LDA模型中的Gibbs抽样过程
|
||
:param is_calculate_preplexity: 是否计算preplexity值
|
||
"""
|
||
# 计算preplexity值用到的变量
|
||
pp_list = []
|
||
pp_var = numpy.inf
|
||
|
||
# 开始迭代
|
||
last_iter = self.current_iter + 1
|
||
iters_num = self.iters_num if self.iters_num != "auto" else MAX_ITER_NUM
|
||
for self.current_iter in range(last_iter, last_iter+iters_num):
|
||
info = "......"
|
||
|
||
# 是否计算preplexity值
|
||
if is_calculate_preplexity:
|
||
pp = self.calculate_perplexity()
|
||
pp_list.append(pp)
|
||
|
||
# 计算列表最新VAR_NUM项的方差
|
||
pp_var = numpy.var(pp_list[-VAR_NUM:]) if len(pp_list) >= VAR_NUM else numpy.inf
|
||
info = (", preplexity: " + str(pp)) + ((", var: " + str(pp_var)) if len(pp_list) >= VAR_NUM else "")
|
||
|
||
# 输出Debug信息
|
||
logging.debug("\titeration " + str(self.current_iter) + info)
|
||
|
||
# 判断是否跳出循环
|
||
if self.iters_num == "auto" and pp_var < (VAR_NUM / 2):
|
||
break
|
||
|
||
# 对每篇article的每个word进行一次抽样,抽取合适的k值
|
||
for m in range(self.M):
|
||
for n in range(len(self.Z[m])):
|
||
w = self.arts_Z[m][n]
|
||
k = self.Z[m][n]
|
||
|
||
# 统计计数减一
|
||
self.nd[m, k] -= 1
|
||
self.ndsum[m, 0] -= 1
|
||
self.nw[k, w] -= 1
|
||
self.nwsum[k, 0] -= 1
|
||
|
||
if self.prior_word and (w in self.prior_word):
|
||
# 带有先验知识,否则进行正常抽样
|
||
k = numpy.random.choice(self.prior_word[w])
|
||
else:
|
||
# 计算theta值--下边的过程为抽取第m篇article的第n个词w的topic,即新的k
|
||
theta_p = (self.nd[m] + self.alpha) / (self.ndsum[m, 0] + self.sum_alpha)
|
||
|
||
# 计算phi值--判断是训练模型,还是推断模型(注意self.beta[w_g])
|
||
if self.local_2_global and self.train_model:
|
||
w_g = self.local_2_global[w]
|
||
phi_p = (self.train_model.nw[:, w_g] + self.nw[:, w] + self.beta[w_g]) / \
|
||
(self.train_model.nwsum[:, 0] + self.nwsum[:, 0] + self.sum_beta)
|
||
else:
|
||
phi_p = (self.nw[:, w] + self.beta[w]) / (self.nwsum[:, 0] + self.sum_beta)
|
||
|
||
# multi_p为多项式分布的参数,此时没有进行标准化
|
||
multi_p = theta_p * phi_p
|
||
|
||
# 此时的topic即为Gibbs抽样得到的topic,它有较大的概率命中多项式概率大的topic
|
||
k = LdaBase.multinomial_sample(multi_p)
|
||
|
||
# 统计计数加一
|
||
self.nd[m, k] += 1
|
||
self.ndsum[m, 0] += 1
|
||
self.nw[k, w] += 1
|
||
self.nwsum[k, 0] += 1
|
||
|
||
# 更新Z值
|
||
self.Z[m][n] = k
|
||
# 抽样完毕
|
||
return
|
||
|
||
# -----------------------------------------Model数据存储、读取相关函数-------------------------------------------------
|
||
def save_parameter(self, file_name):
|
||
"""
|
||
:key: 保存模型相关参数数据,包括: topics_num, M, V, K, words_count, alpha, beta
|
||
"""
|
||
with open(file_name, "w", encoding="utf-8") as f_param:
|
||
for item in ["topics_num", "M", "V", "K", "words_count"]:
|
||
f_param.write("%s\t%s\n" % (item, str(self.__dict__[item])))
|
||
f_param.write("alpha\t%s\n" % ",".join([str(item) for item in self.alpha]))
|
||
f_param.write("beta\t%s\n" % ",".join([str(item) for item in self.beta]))
|
||
return
|
||
|
||
def load_parameter(self, file_name):
|
||
"""
|
||
:key: 加载模型相关参数数据,和上一个函数相对应
|
||
"""
|
||
with open(file_name, "r", encoding="utf-8") as f_param:
|
||
for line in f_param:
|
||
key, value = line.strip().split()
|
||
if key in ["topics_num", "M", "V", "K", "words_count"]:
|
||
self.__dict__[key] = int(value)
|
||
elif key in ["alpha", "beta"]:
|
||
self.__dict__[key] = numpy.array([float(item) for item in value.split(",")])
|
||
return
|
||
|
||
def save_zvalue(self, file_name):
|
||
"""
|
||
:key: 保存模型关于article的变量,包括: arts_Z, Z, artids_list等
|
||
"""
|
||
with open(file_name, "w", encoding="utf-8") as f_zvalue:
|
||
for m in range(self.M):
|
||
out_line = [str(w) + ":" + str(k) for w, k in zip(self.arts_Z[m], self.Z[m])]
|
||
f_zvalue.write(self.artids_list[m] + "\t" + " ".join(out_line) + "\n")
|
||
return
|
||
|
||
def load_zvalue(self, file_name):
|
||
"""
|
||
:key: 读取模型的Z变量。和上一个函数相对应
|
||
"""
|
||
self.arts_Z = []
|
||
self.artids_list = []
|
||
self.Z = []
|
||
with open(file_name, "r", encoding="utf-8") as f_zvalue:
|
||
for line in f_zvalue:
|
||
frags = line.strip().split()
|
||
art_id = frags[0].strip()
|
||
w_k_list = [value.split(":") for value in frags[1:]]
|
||
# 添加到类中
|
||
self.artids_list.append(art_id)
|
||
self.arts_Z.append([int(item[0]) for item in w_k_list])
|
||
self.Z.append([int(item[1]) for item in w_k_list])
|
||
return
|
||
|
||
def save_twords(self, file_name):
|
||
"""
|
||
:key: 保存模型的twords数据,要用到phi的数据
|
||
"""
|
||
self.calculate_phi()
|
||
out_num = self.V if self.twords_num > self.V else self.twords_num
|
||
with open(file_name, "w", encoding="utf-8") as f_twords:
|
||
for k in range(self.K):
|
||
words_list = sorted([(w, self.phi[k, w]) for w in range(self.V)], key=lambda x: x[1], reverse=True)
|
||
f_twords.write("Topic %dth:\n" % k)
|
||
f_twords.writelines(["\t%s %f\n" % (self.local_bi.get_value(w), p) for w, p in words_list[:out_num]])
|
||
return
|
||
|
||
def load_twords(self, file_name):
|
||
"""
|
||
:key: 加载模型的twords数据,即先验数据
|
||
"""
|
||
self.prior_word.clear()
|
||
topic = -1
|
||
with open(file_name, "r", encoding="utf-8") as f_twords:
|
||
for line in f_twords:
|
||
if line.startswith("Topic"):
|
||
topic = int(line.strip()[6:-3])
|
||
else:
|
||
word_id = self.local_bi.get_key(line.strip().split()[0].strip())
|
||
self.prior_word[word_id].append(topic)
|
||
return
|
||
|
||
def save_tag(self, file_name):
|
||
"""
|
||
:key: 输出模型最终给数据打标签的结果,用到theta值
|
||
"""
|
||
self.calculate_theta()
|
||
with open(file_name, "w", encoding="utf-8") as f_tag:
|
||
for m in range(self.M):
|
||
f_tag.write("%s\t%s\n" % (self.artids_list[m], " ".join([str(item) for item in self.theta[m]])))
|
||
return
|
||
|
||
def save_model(self):
|
||
"""
|
||
:key: 保存模型数据
|
||
"""
|
||
name_predix = "%s-%05d" % (self.model_name, self.current_iter)
|
||
|
||
# 保存训练结果
|
||
self.save_parameter(os.path.join(self.dir_path, "%s.%s" % (name_predix, "param")))
|
||
self.save_wordmap(os.path.join(self.dir_path, "%s.%s" % (name_predix, "wordmap")))
|
||
self.save_zvalue(os.path.join(self.dir_path, "%s.%s" % (name_predix, "zvalue")))
|
||
|
||
#保存额外数据
|
||
self.save_twords(os.path.join(self.dir_path, "%s.%s" % (name_predix, "twords")))
|
||
self.save_tag(os.path.join(self.dir_path, "%s.%s" % (name_predix, "tag")))
|
||
return
|
||
|
||
def load_model(self):
|
||
"""
|
||
:key: 加载模型数据
|
||
"""
|
||
name_predix = "%s-%05d" % (self.model_name, self.current_iter)
|
||
|
||
# 加载训练结果
|
||
self.load_parameter(os.path.join(self.dir_path, "%s.%s" % (name_predix, "param")))
|
||
self.load_wordmap(os.path.join(self.dir_path, "%s.%s" % (name_predix, "wordmap")))
|
||
self.load_zvalue(os.path.join(self.dir_path, "%s.%s" % (name_predix, "zvalue")))
|
||
return
|
||
|
||
|
||
class LdaModel(LdaBase):
|
||
"""
|
||
LDA模型定义,主要实现训练、继续训练、推断的过程
|
||
"""
|
||
|
||
def init_train_model(self, dir_path, model_name, current_iter, iters_num=None, topics_num=10, twords_num=200,
|
||
alpha=-1.0, beta=0.01, data_file="", prior_file=""):
|
||
"""
|
||
:key: 初始化训练模型,根据参数current_iter(是否等于0)决定是初始化新模型,还是加载已有模型
|
||
:key: 当初始化新模型时,除了prior_file先验文件外,其余所有的参数都需要,且current_iter等于0
|
||
:key: 当加载已有模型时,只需要dir_path, model_name, current_iter(不等于0), iters_num, twords_num即可
|
||
:param iters_num: 可以为整数值或者“auto”
|
||
"""
|
||
if current_iter == 0:
|
||
logging.debug("init a new train model")
|
||
|
||
# 初始化语料集
|
||
self.init_corpus_with_file(data_file)
|
||
|
||
# 初始化部分变量
|
||
self.dir_path = dir_path
|
||
self.model_name = model_name
|
||
self.current_iter = current_iter
|
||
self.iters_num = iters_num
|
||
self.topics_num = topics_num
|
||
self.K = topics_num
|
||
self.twords_num = twords_num
|
||
|
||
# 初始化alpha和beta
|
||
self.alpha = numpy.array([alpha if alpha > 0 else (50.0/self.K) for k in range(self.K)])
|
||
self.beta = numpy.array([beta if beta > 0 else 0.01 for w in range(self.V)])
|
||
|
||
# 初始化Z值,以便统计计数
|
||
self.Z = [[numpy.random.randint(self.K) for n in range(len(self.arts_Z[m]))] for m in range(self.M)]
|
||
else:
|
||
logging.debug("init an existed model")
|
||
|
||
# 初始化部分变量
|
||
self.dir_path = dir_path
|
||
self.model_name = model_name
|
||
self.current_iter = current_iter
|
||
self.iters_num = iters_num
|
||
self.twords_num = twords_num
|
||
|
||
# 加载已有模型
|
||
self.load_model()
|
||
|
||
# 初始化统计计数
|
||
self.init_statistics()
|
||
|
||
# 计算alpha和beta的和值
|
||
self.sum_alpha_beta()
|
||
|
||
# 初始化先验知识
|
||
if prior_file:
|
||
self.load_twords(prior_file)
|
||
|
||
# 返回该模型
|
||
return self
|
||
|
||
def begin_gibbs_sampling_train(self, is_calculate_preplexity=True):
|
||
"""
|
||
:key: 训练模型,对语料集中的所有数据进行Gibbs抽样,并保存最后的抽样结果
|
||
"""
|
||
# Gibbs抽样
|
||
logging.debug("sample iteration start, iters_num: " + str(self.iters_num))
|
||
self.gibbs_sampling(is_calculate_preplexity)
|
||
logging.debug("sample iteration finish")
|
||
|
||
# 保存模型
|
||
logging.debug("save model")
|
||
self.save_model()
|
||
return
|
||
|
||
def init_inference_model(self, train_model):
|
||
"""
|
||
:key: 初始化推断模型
|
||
"""
|
||
self.train_model = train_model
|
||
|
||
# 初始化变量: 主要用到self.topics_num, self.K
|
||
self.topics_num = train_model.topics_num
|
||
self.K = train_model.K
|
||
|
||
# 初始化变量self.alpha, self.beta,直接沿用train_model的值
|
||
self.alpha = train_model.alpha # K维的float值,训练和推断模型中的K相同,故可以沿用
|
||
self.beta = train_model.beta # V维的float值,推断模型中用于计算phi的V值应该是全局的word的数量,故可以沿用
|
||
self.sum_alpha_beta() # 计算alpha和beta的和
|
||
|
||
# 初始化数据集的self.global_bi
|
||
self.global_bi = train_model.local_bi
|
||
return
|
||
|
||
def inference_data(self, article_list, iters_num=100, repeat_num=3):
|
||
"""
|
||
:key: 利用现有模型推断数据
|
||
:param article_list: 每一行的数据格式为: id[tab]word1 word2 word3......
|
||
:param iters_num: 每一次迭代的次数
|
||
:param repeat_num: 重复迭代的次数
|
||
"""
|
||
# 初始化语料集
|
||
self.init_corpus_with_articles(article_list)
|
||
|
||
# 初始化返回变量
|
||
return_theta = numpy.zeros((self.M, self.K))
|
||
|
||
# 重复抽样
|
||
for i in range(repeat_num):
|
||
logging.debug("inference repeat_num: " + str(i+1))
|
||
|
||
# 初始化变量
|
||
self.current_iter = 0
|
||
self.iters_num = iters_num
|
||
|
||
# 初始化Z值,以便统计计数
|
||
self.Z = [[numpy.random.randint(self.K) for n in range(len(self.arts_Z[m]))] for m in range(self.M)]
|
||
|
||
# 初始化统计计数
|
||
self.init_statistics()
|
||
|
||
# 开始推断
|
||
self.gibbs_sampling(is_calculate_preplexity=False)
|
||
|
||
# 计算theta
|
||
self.calculate_theta()
|
||
return_theta += self.theta
|
||
|
||
# 计算结果,并返回
|
||
return return_theta / repeat_num
|
||
|
||
|
||
if __name__ == "__main__":
|
||
"""
|
||
测试代码
|
||
"""
|
||
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s\t%(levelname)s\t%(message)s")
|
||
|
||
# train或者inference
|
||
test_type = "train"
|
||
# test_type = "inference"
|
||
|
||
# 测试新模型
|
||
if test_type == "train":
|
||
model = LdaModel()
|
||
# 由prior_file决定是否带有先验知识
|
||
model.init_train_model("data/", "model", current_iter=0, iters_num="auto", topics_num=10, data_file="corpus.txt")
|
||
# model.init_train_model("data/", "model", current_iter=0, iters_num="auto", topics_num=10, data_file="corpus.txt", prior_file="prior.twords")
|
||
model.begin_gibbs_sampling_train()
|
||
elif test_type == "inference":
|
||
model = LdaModel()
|
||
model.init_inference_model(LdaModel().init_train_model("data/", "model", current_iter=134))
|
||
data = [
|
||
"cn 咪咕 漫画 咪咕 漫画 漫画 更名 咪咕 漫画 资源 偷星 国漫 全彩 日漫 实时 在线看 随心所欲 登陆 漫画 资源 黑白 全彩 航海王",
|
||
"co aircloud aircloud 硬件 设备 wifi 智能 手要 平板电脑 电脑 存储 aircloud 文件 远程 型号 aircloud 硬件 设备 wifi"
|
||
]
|
||
result = model.inference_data(data)
|
||
|
||
# 退出程序
|
||
exit()
|