kubespray/docs/cilium.md

249 lines
8.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Cilium
## IP Address Management (IPAM)
IP Address Management (IPAM) is responsible for the allocation and management of IP addresses used by network endpoints (container and others) managed by Cilium. The default mode is "Cluster Scope".
You can set the following parameters, for example: cluster-pool, kubernetes:
```yml
cilium_ipam_mode: cluster-pool
```
### Set the cluster Pod CIDRs
Cluster Pod CIDRs use the kube_pods_subnet value by default.
If your node network is in the same range you will lose connectivity to other nodes.
Defaults to kube_pods_subnet if not set.
You can set the following parameters:
```yml
cilium_pool_cidr: 10.233.64.0/18
```
When cilium_enable_ipv6 is used. Defaults to kube_pods_subnet_ipv6 if not set.
you need to set the IPV6 value:
```yml
cilium_pool_cidr_ipv6: fd85:ee78:d8a6:8607::1:0000/112
```
### Set the Pod CIDR size of a node
When cilium IPAM uses the "Cluster Scope" mode, it will pre-allocate a segment of IP to each node,
schedule the Pod to this node, and then allocate IP from here. cilium_pool_mask_size Specifies
the size allocated from cluster Pod CIDR to node.ipam.podCIDRs.
Defaults to kube_network_node_prefix if not set.
```yml
cilium_pool_mask_size: "24"
```
cilium_pool_mask_size Specifies the size allocated to node.ipam.podCIDRs from cluster Pod IPV6 CIDR. Defaults to kube_network_node_prefix_ipv6 if not set.
```yml
cilium_pool_mask_size_ipv6: "120"
```
## Kube-proxy replacement with Cilium
Cilium can run without kube-proxy by setting `cilium_kube_proxy_replacement`
to `strict`.
Without kube-proxy, cilium needs to know the address of the kube-apiserver
and this must be set globally for all Cilium components (agents and operators).
We can only use the localhost apiserver loadbalancer in this mode
whenever it uses the same port as the kube-apiserver (by default it does).
## Cilium Operator
Unlike some operators, Cilium Operator does not exist for installation purposes.
> The Cilium Operator is responsible for managing duties in the cluster which should logically be handled once for the entire cluster, rather than once for each node in the cluster.
### Adding custom flags to the Cilium Operator
You can set additional cilium-operator container arguments using `cilium_operator_custom_args`.
This is an advanced option, and you should only use it if you know what you are doing.
Accepts an array or a string.
```yml
cilium_operator_custom_args: ["--foo=bar", "--baz=qux"]
```
or
```yml
cilium_operator_custom_args: "--foo=bar"
```
You do not need to add a custom flag to enable debugging. Instead, feel free to use the `CILIUM_DEBUG` variable.
### Adding extra volumes and mounting them
You can use `cilium_operator_extra_volumes` to add extra volumes to the Cilium Operator, and use `cilium_operator_extra_volume_mounts` to mount those volumes.
This is an advanced option, and you should only use it if you know what you are doing.
```yml
cilium_operator_extra_volumes:
- configMap:
name: foo
name: foo-mount-path
cilium_operator_extra_volume_mounts:
- mountPath: /tmp/foo/bar
name: foo-mount-path
readOnly: true
```
## Choose Cilium version
```yml
cilium_version: v1.15.4
```
## Add variable to config
Use following variables:
Example:
```yml
cilium_config_extra_vars:
enable-endpoint-routes: true
```
## Change Identity Allocation Mode
Cilium assigns an identity for each endpoint. This identity is used to enforce basic connectivity between endpoints.
Cilium currently supports two different identity allocation modes:
- "crd" stores identities in kubernetes as CRDs (custom resource definition).
- These can be queried with `kubectl get ciliumid`
- "kvstore" stores identities in an etcd kvstore.
## Enable Transparent Encryption
Cilium supports the transparent encryption of Cilium-managed host traffic and
traffic between Cilium-managed endpoints either using IPsec or Wireguard.
Wireguard option is only available in Cilium 1.10.0 and newer.
### IPsec Encryption
For further information, make sure to check the official [Cilium documentation.](https://docs.cilium.io/en/stable/gettingstarted/encryption-ipsec/)
To enable IPsec encryption, you just need to set three variables.
```yml
cilium_encryption_enabled: true
cilium_encryption_type: "ipsec"
```
The third variable is `cilium_ipsec_key`. You need to create a secret key string for this variable.
Kubespray does not automate this process.
Cilium documentation currently recommends creating a key using the following command:
```shell
echo "3 rfc4106(gcm(aes)) $(echo $(dd if=/dev/urandom count=20 bs=1 2> /dev/null | xxd -p -c 64)) 128"
```
Note that Kubespray handles secret creation. So you only need to pass the key as the `cilium_ipsec_key` variable, base64 encoded:
```shell
echo "cilium_ipsec_key: "$(echo -n "3 rfc4106(gcm(aes)) $(echo $(dd if=/dev/urandom count=20 bs=1 2> /dev/null | xxd -p -c 64)) 128" | base64 -w0)
```
### Wireguard Encryption
For further information, make sure to check the official [Cilium documentation.](https://docs.cilium.io/en/stable/gettingstarted/encryption-wireguard/)
To enable Wireguard encryption, you just need to set two variables.
```yml
cilium_encryption_enabled: true
cilium_encryption_type: "wireguard"
```
Kubespray currently supports Linux distributions with Wireguard Kernel mode on Linux 5.6 and newer.
## Bandwidth Manager
Ciliums bandwidth manager supports the kubernetes.io/egress-bandwidth Pod annotation.
Bandwidth enforcement currently does not work in combination with L7 Cilium Network Policies.
In case they select the Pod at egress, then the bandwidth enforcement will be disabled for those Pods.
Bandwidth Manager requires a v5.1.x or more recent Linux kernel.
For further information, make sure to check the official [Cilium documentation.](https://docs.cilium.io/en/v1.12/gettingstarted/bandwidth-manager/)
To use this function, set the following parameters
```yml
cilium_enable_bandwidth_manager: true
```
## Install Cilium Hubble
k8s-net-cilium.yml:
```yml
cilium_enable_hubble: true ## enable support hubble in cilium
cilium_hubble_install: true ## install hubble-relay, hubble-ui
cilium_hubble_tls_generate: true ## install hubble-certgen and generate certificates
```
To validate that Hubble UI is properly configured, set up a port forwarding for hubble-ui service:
```shell script
kubectl port-forward -n kube-system svc/hubble-ui 12000:80
```
and then open [http://localhost:12000/](http://localhost:12000/).
## Hubble metrics
```yml
cilium_enable_hubble_metrics: true
cilium_hubble_metrics:
- dns
- drop
- tcp
- flow
- icmp
- http
```
[More](https://docs.cilium.io/en/v1.9/operations/metrics/#hubble-exported-metrics)
## Upgrade considerations
### Rolling-restart timeouts
Cilium relies on the kernel's BPF support, which is extremely fast at runtime but incurs a compilation penalty on initialization and update.
As a result, the Cilium DaemonSet pods can take a significant time to start, which scales with the number of nodes and endpoints in your cluster.
As part of cluster.yml, this DaemonSet is restarted, and Kubespray's [default timeouts for this operation](../roles/network_plugin/cilium/defaults/main.yml)
are not appropriate for large clusters.
This means that you will likely want to update these timeouts to a value more in-line with your cluster's number of nodes and their respective CPU performance.
This is configured by the following values:
```yaml
# Configure how long to wait for the Cilium DaemonSet to be ready again
cilium_rolling_restart_wait_retries_count: 30
cilium_rolling_restart_wait_retries_delay_seconds: 10
```
The total time allowed (count * delay) should be at least `($number_of_nodes_in_cluster * $cilium_pod_start_time)` for successful rolling updates. There are no
drawbacks to making it higher and giving yourself a time buffer to accommodate transient slowdowns.
Note: To find the `$cilium_pod_start_time` for your cluster, you can simply restart a Cilium pod on a node of your choice and look at how long it takes for it
to become ready.
Note 2: The default CPU requests/limits for Cilium pods is set to a very conservative 100m:500m which will likely yield very slow startup for Cilium pods. You
probably want to significantly increase the CPU limit specifically if short bursts of CPU from Cilium are acceptable to you.