torch-mlir/test/Conversion/TorchToSCF/basic.mlir

245 lines
14 KiB
MLIR
Raw Permalink Normal View History

// RUN: torch-mlir-opt <%s --split-input-file -convert-torch-to-scf| FileCheck %s
// CHECK-LABEL: func.func @torch.prim.if(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.bool) -> !torch.int {
// CHECK: %[[VAL_1:.*]] = torch_c.to_i1 %[[VAL_0]]
// CHECK: %[[VAL_2:.*]] = torch.constant.int 2
TorchToLinalg: Try folding shape computations to keep static shapes when possible (#3475) Before this PR, a statically shaped aten.convolution would generate dynamically shaped linalg IR, and even `-canonicalize` would not be able to fold it back into static shapes. This PR ensure that shape calculations are folded on construction to directly generate statically shaped linalg IR. We achieve that by ensuring that `arith` ops involved in computing shapes are created via `createOrFold`, so that later uses of `getAsOpFoldResult` see constants instead of those ops. For example ``` module { func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>, %arg1: !torch.vtensor<[336,168,3,3],f32>, %arg2: !torch.vtensor<[336],f32>) -> !torch.vtensor<[32,336,56,56],f32> { %false = torch.constant.bool false %int2 = torch.constant.int 2 %int1 = torch.constant.int 1 %0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int> %1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int> %2 = torch.prim.ListConstruct : () -> !torch.list<int> %3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2 : !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[32,336,56,56],f32> return %3 : !torch.vtensor<[32,336,56,56],f32> } } ``` would result in ``` [...] %padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32> [...] %45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>) outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32> [...] ``` and with this PR all shapes are static.
2024-06-27 14:43:10 +08:00
// CHECK: %[[VAL_3:.*]] = arith.constant 2 : i64
// CHECK: %[[VAL_4:.*]] = torch.constant.int 1
TorchToLinalg: Try folding shape computations to keep static shapes when possible (#3475) Before this PR, a statically shaped aten.convolution would generate dynamically shaped linalg IR, and even `-canonicalize` would not be able to fold it back into static shapes. This PR ensure that shape calculations are folded on construction to directly generate statically shaped linalg IR. We achieve that by ensuring that `arith` ops involved in computing shapes are created via `createOrFold`, so that later uses of `getAsOpFoldResult` see constants instead of those ops. For example ``` module { func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>, %arg1: !torch.vtensor<[336,168,3,3],f32>, %arg2: !torch.vtensor<[336],f32>) -> !torch.vtensor<[32,336,56,56],f32> { %false = torch.constant.bool false %int2 = torch.constant.int 2 %int1 = torch.constant.int 1 %0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int> %1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int> %2 = torch.prim.ListConstruct : () -> !torch.list<int> %3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2 : !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[32,336,56,56],f32> return %3 : !torch.vtensor<[32,336,56,56],f32> } } ``` would result in ``` [...] %padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32> [...] %45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>) outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32> [...] ``` and with this PR all shapes are static.
2024-06-27 14:43:10 +08:00
// CHECK: %[[VAL_5:.*]] = arith.constant 1 : i64
// CHECK: %[[VAL_6:.*]] = scf.if %[[VAL_1]] -> (i64) {
// CHECK: scf.yield %[[VAL_3]] : i64
// CHECK: } else {
// CHECK: scf.yield %[[VAL_5]] : i64
// CHECK: }
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
// CHECK: %[[VAL_7:.*]] = torch_c.from_i64 %[[VAL_8:.*]]
// CHECK: return %[[VAL_7]] : !torch.int
func.func @torch.prim.if(%arg0: !torch.bool) -> !torch.int {
%int2 = torch.constant.int 2
%int1 = torch.constant.int 1
%0 = torch.prim.If %arg0 -> (!torch.int) {
torch.prim.If.yield %int2 : !torch.int
} else {
torch.prim.If.yield %int1 : !torch.int
}
return %0 : !torch.int
}
// CHECK-LABEL: func.func @aten.prim.if$nested(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.bool,
// CHECK-SAME: %[[VAL_1:.*]]: !torch.bool) -> !torch.int {
// CHECK-DAG: %[[VAL_2:.*]] = torch_c.to_i1 %[[VAL_0]]
// CHECK-DAG: %[[VAL_3:.*]] = torch_c.to_i1 %[[VAL_1]]
// CHECK: %[[VAL_4:.*]] = torch.constant.int 2
TorchToLinalg: Try folding shape computations to keep static shapes when possible (#3475) Before this PR, a statically shaped aten.convolution would generate dynamically shaped linalg IR, and even `-canonicalize` would not be able to fold it back into static shapes. This PR ensure that shape calculations are folded on construction to directly generate statically shaped linalg IR. We achieve that by ensuring that `arith` ops involved in computing shapes are created via `createOrFold`, so that later uses of `getAsOpFoldResult` see constants instead of those ops. For example ``` module { func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>, %arg1: !torch.vtensor<[336,168,3,3],f32>, %arg2: !torch.vtensor<[336],f32>) -> !torch.vtensor<[32,336,56,56],f32> { %false = torch.constant.bool false %int2 = torch.constant.int 2 %int1 = torch.constant.int 1 %0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int> %1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int> %2 = torch.prim.ListConstruct : () -> !torch.list<int> %3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2 : !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[32,336,56,56],f32> return %3 : !torch.vtensor<[32,336,56,56],f32> } } ``` would result in ``` [...] %padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32> [...] %45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>) outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32> [...] ``` and with this PR all shapes are static.
2024-06-27 14:43:10 +08:00
// CHECK: %[[VAL_5:.*]] = arith.constant 2 : i64
// CHECK: %[[VAL_6:.*]] = torch.constant.int 3
TorchToLinalg: Try folding shape computations to keep static shapes when possible (#3475) Before this PR, a statically shaped aten.convolution would generate dynamically shaped linalg IR, and even `-canonicalize` would not be able to fold it back into static shapes. This PR ensure that shape calculations are folded on construction to directly generate statically shaped linalg IR. We achieve that by ensuring that `arith` ops involved in computing shapes are created via `createOrFold`, so that later uses of `getAsOpFoldResult` see constants instead of those ops. For example ``` module { func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>, %arg1: !torch.vtensor<[336,168,3,3],f32>, %arg2: !torch.vtensor<[336],f32>) -> !torch.vtensor<[32,336,56,56],f32> { %false = torch.constant.bool false %int2 = torch.constant.int 2 %int1 = torch.constant.int 1 %0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int> %1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int> %2 = torch.prim.ListConstruct : () -> !torch.list<int> %3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2 : !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[32,336,56,56],f32> return %3 : !torch.vtensor<[32,336,56,56],f32> } } ``` would result in ``` [...] %padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32> [...] %45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>) outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32> [...] ``` and with this PR all shapes are static.
2024-06-27 14:43:10 +08:00
// CHECK: %[[VAL_7:.*]] = arith.constant 3 : i64
// CHECK: %[[VAL_8:.*]] = torch.constant.int 4
TorchToLinalg: Try folding shape computations to keep static shapes when possible (#3475) Before this PR, a statically shaped aten.convolution would generate dynamically shaped linalg IR, and even `-canonicalize` would not be able to fold it back into static shapes. This PR ensure that shape calculations are folded on construction to directly generate statically shaped linalg IR. We achieve that by ensuring that `arith` ops involved in computing shapes are created via `createOrFold`, so that later uses of `getAsOpFoldResult` see constants instead of those ops. For example ``` module { func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>, %arg1: !torch.vtensor<[336,168,3,3],f32>, %arg2: !torch.vtensor<[336],f32>) -> !torch.vtensor<[32,336,56,56],f32> { %false = torch.constant.bool false %int2 = torch.constant.int 2 %int1 = torch.constant.int 1 %0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int> %1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int> %2 = torch.prim.ListConstruct : () -> !torch.list<int> %3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2 : !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[32,336,56,56],f32> return %3 : !torch.vtensor<[32,336,56,56],f32> } } ``` would result in ``` [...] %padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32> [...] %45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>) outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32> [...] ``` and with this PR all shapes are static.
2024-06-27 14:43:10 +08:00
// CHECK: %[[VAL_9:.*]] = arith.constant 4 : i64
// CHECK: %[[VAL_10:.*]] = scf.if %[[VAL_2]] -> (i64) {
// CHECK: %[[VAL_11:.*]] = scf.if %[[VAL_3]] -> (i64) {
// CHECK: scf.yield %[[VAL_5]] : i64
// CHECK: } else {
// CHECK: scf.yield %[[VAL_7]] : i64
// CHECK: }
// CHECK: scf.yield %[[VAL_12:.*]] : i64
// CHECK: } else {
// CHECK: scf.yield %[[VAL_9]] : i64
// CHECK: }
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
// CHECK: %[[VAL_13:.*]] = torch_c.from_i64 %[[VAL_14:.*]]
// CHECK: return %[[VAL_13]] : !torch.int
func.func @aten.prim.if$nested(%arg0: !torch.bool, %arg1: !torch.bool) -> !torch.int {
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%int4 = torch.constant.int 4
%0 = torch.prim.If %arg0 -> (!torch.int) {
%1 = torch.prim.If %arg1 -> (!torch.int) {
torch.prim.If.yield %int2 : !torch.int
} else {
torch.prim.If.yield %int3 : !torch.int
}
torch.prim.If.yield %1 : !torch.int
} else {
torch.prim.If.yield %int4 : !torch.int
}
return %0 : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.loop$while
// CHECK-SAME: (%[[ARG0:.*]]: !torch.int) -> !torch.float {
// CHECK: %[[TORCH_FLOAT_VAL:.*]] = torch.constant.float
// CHECK-NEXT: %[[FLOAT_VAL:.*]] = torch_c.to_f64 %[[TORCH_FLOAT_VAL]]
// CHECK-NEXT: %[[MAX_TRIP_COUNT:.*]] = torch.constant.int 9223372036854775807
// CHECK-NEXT: %[[TORCH_CONDITION:.*]] = torch.aten.lt.float_int %[[TORCH_FLOAT_VAL]], %[[ARG0]]
// CHECK-NEXT: %[[CONDITION:.*]] = torch_c.to_i1 %[[TORCH_CONDITION]]
// CHECK-NEXT: %[[LOOP:.*]] = scf.while
// CHECK-SAME: (%[[LOOP_CONDITION:.*]] = %[[CONDITION]], %[[LOOP_ARG:.*]] = %[[FLOAT_VAL]]) : (i1, f64) -> f64 {
// CHECK-NEXT: scf.condition(%[[LOOP_CONDITION]]) %[[LOOP_ARG]]
// CHECK-NEXT: } do {
// CHECK-NEXT: ^bb0(%[[BLOCK_ARG:.*]]: f64):
// CHECK-NEXT: %[[TORCH_BLOCK_ARG:.*]] = torch_c.from_f64 %[[BLOCK_ARG]]
// CHECK-NEXT: %[[TORCH_VAL:.*]] = torch.aten.mul.float %[[TORCH_BLOCK_ARG]], %[[TORCH_BLOCK_ARG]]
// CHECK-NEXT: %[[TORCH_BLOCK_CONDITION:.*]] = torch.aten.lt.float_int %[[TORCH_VAL]], %[[ARG0]]
// CHECK-NEXT: %[[BLOCK_CONDITION:.*]] = torch_c.to_i1 %[[TORCH_BLOCK_CONDITION]]
// CHECK-NEXT: %[[VAL:.*]] = torch_c.to_f64 %[[TORCH_VAL]]
// CHECK-NEXT: scf.yield %[[BLOCK_CONDITION]], %[[VAL]] : i1, f64
// CHECK-NEXT: }
// CHECK-NEXT: %[[TORCH_LOOP:.*]] = torch_c.from_f64 %[[LOOP]]
// CHECK-NEXT: return %[[TORCH_LOOP]] : !torch.float
func.func @torch.prim.loop$while(%arg0: !torch.int) -> !torch.float {
%float3.200000e00 = torch.constant.float 3.200000e+00
%int9223372036854775807 = torch.constant.int 9223372036854775807
%0 = torch.aten.lt.float_int %float3.200000e00, %arg0 : !torch.float, !torch.int -> !torch.bool
%1 = torch.prim.Loop %int9223372036854775807, %0, init(%float3.200000e00) {
^bb0(%arg1: !torch.int, %arg2: !torch.float):
%2 = torch.aten.mul.float %arg2, %arg2 : !torch.float, !torch.float -> !torch.float
%3 = torch.aten.lt.float_int %2, %arg0 : !torch.float, !torch.int -> !torch.bool
torch.prim.Loop.condition %3, iter(%2 : !torch.float)
} : (!torch.int, !torch.bool, !torch.float) -> !torch.float
return %1 : !torch.float
}
// CHECK-LABEL: func.func @torch.prim.loop$while_with_multiple_values
// CHECK-SAME: () -> (!torch.float, !torch.float) {
// CHECK: %[[TORCH_FLOAT_VAL_0:.*]] = torch.constant.float
// CHECK-NEXT: %[[FLOAT_VAL_0:.*]] = torch_c.to_f64 %[[TORCH_FLOAT_VAL_0]]
// CHECK-NEXT: %[[MAX_TRIP_COUNT:.*]] = torch.constant.int 9223372036854775807
// CHECK-NEXT: %[[TORCH_FLOAT_VAL_1:.*]] = torch.constant.float
// CHECK-NEXT: %[[FLOAT_VAL_1:.*]] = torch_c.to_f64 %[[TORCH_FLOAT_VAL_1]]
// CHECK-NEXT: %[[TORCH_CONDITION:.*]] = torch.aten.lt.float %[[TORCH_FLOAT_VAL_0]], %[[TORCH_FLOAT_VAL_1]]
// CHECK-NEXT: %[[CONDITION:.*]] = torch_c.to_i1 %[[TORCH_CONDITION]]
// CHECK-NEXT: %[[LOOP:.*]]:2 = scf.while
// CHECK-SAME: (%[[LOOP_CONDITION:.*]] = %[[CONDITION]], %[[LOOP_ARG_0:.*]] = %[[FLOAT_VAL_0]], %[[LOOP_ARG_1:.*]] = %[[FLOAT_VAL_1]]) : (i1, f64, f64) -> (f64, f64) {
// CHECK-NEXT: scf.condition(%[[LOOP_CONDITION]]) %[[LOOP_ARG_0]], %[[LOOP_ARG_1]]
// CHECK-NEXT: } do {
// CHECK-NEXT: ^bb0(%[[BLOCK_ARG_0:.*]]: f64, %[[BLOCK_ARG_1:.*]]: f64):
// CHECK-NEXT: %[[TORCH_BLOCK_ARG_0:.*]] = torch_c.from_f64 %[[BLOCK_ARG_0]]
// CHECK-NEXT: %[[TORCH_BLOCK_ARG_1:.*]] = torch_c.from_f64 %[[BLOCK_ARG_1]]
// CHECK-NEXT: %[[TORCH_VAL_0:.*]] = torch.aten.mul.float %[[TORCH_BLOCK_ARG_0]], %[[TORCH_BLOCK_ARG_0]]
// CHECK-NEXT: %[[TORCH_BLOCK_CONDITION:.*]] = torch.aten.lt.float %[[TORCH_VAL_0]], %[[TORCH_BLOCK_ARG_1]]
// CHECK-NEXT: %[[CONSTANT:.*]] = torch.constant.int -2
// CHECK-NEXT: %[[TORCH_VAL_1:.*]] = torch.aten.add.float_int %[[TORCH_BLOCK_ARG_1]], %[[CONSTANT]]
// CHECK-NEXT: %[[BLOCK_CONDITION:.*]] = torch_c.to_i1 %[[TORCH_BLOCK_CONDITION]]
// CHECK-NEXT: %[[VAL_0:.*]] = torch_c.to_f64 %[[TORCH_VAL_0]]
// CHECK-NEXT: %[[VAL_1:.*]] = torch_c.to_f64 %[[TORCH_VAL_1]]
// CHECK-NEXT: scf.yield %[[BLOCK_CONDITION]], %[[VAL_0]], %[[VAL_1]] : i1, f64, f64
// CHECK-NEXT: }
// CHECK-NEXT: %[[TORCH_LOOP_0:.*]] = torch_c.from_f64 %[[LOOP]]#0
// CHECK-NEXT: %[[TORCH_LOOP_1:.*]] = torch_c.from_f64 %[[LOOP]]#1
// CHECK-NEXT: return %[[TORCH_LOOP_0]], %[[TORCH_LOOP_1]] : !torch.float, !torch.float
func.func @torch.prim.loop$while_with_multiple_values() -> (!torch.float, !torch.float) {
%float3.200000e00 = torch.constant.float 3.200000e+00
%int9223372036854775807 = torch.constant.int 9223372036854775807
%float9.0 = torch.constant.float 9.0
%0 = torch.aten.lt.float %float3.200000e00, %float9.0 : !torch.float, !torch.float -> !torch.bool
%1:2 = torch.prim.Loop %int9223372036854775807, %0, init(%float3.200000e00, %float9.0) {
^bb0(%arg1: !torch.int, %arg2: !torch.float, %arg3: !torch.float):
%2 = torch.aten.mul.float %arg2, %arg2 : !torch.float, !torch.float -> !torch.float
%3 = torch.aten.lt.float %2, %arg3 : !torch.float, !torch.float -> !torch.bool
%4 = torch.constant.int -2
%5 = torch.aten.add.float_int %arg3, %4 : !torch.float, !torch.int -> !torch.float
torch.prim.Loop.condition %3, iter(%2, %5 : !torch.float, !torch.float)
} : (!torch.int, !torch.bool, !torch.float, !torch.float) -> (!torch.float, !torch.float)
return %1#0, %1#1 : !torch.float, !torch.float
}
// CHECK-LABEL: func.func @torch.prim.Loop$for
// CHECK-SAME: (%[[TORCH_ARG0:.*]]: !torch.int) -> !torch.float {
// CHECK: %[[ARG0:.*]] = torch_c.to_i64 %[[TORCH_ARG0]]
// CHECK-NEXT: %{{.*}} = torch.constant.bool true
// CHECK-NEXT: %[[TORCH_FLOAT:.*]] = torch.constant.float 0.000000e+00
// CHECK-NEXT: %[[FLOAT:.*]] = torch_c.to_f64 %[[TORCH_FLOAT]]
// CHECK-NEXT: %[[LOWER_BOUND:.*]] = arith.constant 0 : index
// CHECK-NEXT: %[[STEP:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[UPPER_BOUND:.*]] = arith.index_cast %[[ARG0]] : i64 to index
// CHECK-NEXT: %[[LOOP:.*]] = scf.for %[[IV:.*]] = %[[LOWER_BOUND]] to %[[UPPER_BOUND]] step %[[STEP]]
// CHECK-SAME: iter_args(%[[ITER_ARG:.*]] = %[[FLOAT]]) -> (f64) {
// CHECK-NEXT: %[[IV_I64:.*]] = arith.index_cast %[[IV]] : index to i64
// CHECK-NEXT: %[[TORCH_IV:.*]] = torch_c.from_i64 %[[IV_I64]]
// CHECK-NEXT: %[[TORCH_ITER_ARG:.*]] = torch_c.from_f64 %[[ITER_ARG]]
// CHECK-NEXT: %[[TORCH_VAL:.*]] = torch.aten.add.float_int %[[TORCH_ITER_ARG]], %[[TORCH_IV]]
// CHECK-NEXT: %[[VAL:.*]] = torch_c.to_f64 %[[TORCH_VAL]]
// CHECK-NEXT: scf.yield %[[VAL]] : f64
// CHECK-NEXT: }
// CHECK-NEXT: %[[RETURN:.*]] = torch_c.from_f64 %[[LOOP]]
// CHECK-NEXT: return %[[RETURN]] : !torch.float
// CHECK-NEXT: }
func.func @torch.prim.Loop$for(%arg0: !torch.int) -> !torch.float {
%true = torch.constant.bool true
%float0.000000e00 = torch.constant.float 0.000000e+00
%0 = torch.prim.Loop %arg0, %true, init(%float0.000000e00) {
^bb0(%arg1: !torch.int, %arg2: !torch.float):
%1 = torch.aten.add.float_int %arg2, %arg1 : !torch.float, !torch.int -> !torch.float
torch.prim.Loop.condition %true, iter(%1 : !torch.float)
} : (!torch.int, !torch.bool, !torch.float) -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.prim.Loop$for_with_multiple_results
// CHECK-SAME: (%[[TORCH_ARG0:.*]]: !torch.int) -> (!torch.float, !torch.float) {
// CHECK: %[[ARG0:.*]] = torch_c.to_i64 %[[TORCH_ARG0]]
// CHECK-NEXT: %{{.*}} = torch.constant.bool true
// CHECK-NEXT: %[[TORCH_FLOAT_0:.*]] = torch.constant.float 0.000000e+00
// CHECK-NEXT: %[[FLOAT_0:.*]] = torch_c.to_f64 %[[TORCH_FLOAT_0]]
// CHECK-NEXT: %[[TORCH_FLOAT_1:.*]] = torch.constant.float 9.000000e+00
// CHECK-NEXT: %[[FLOAT_1:.*]] = torch_c.to_f64 %[[TORCH_FLOAT_1]]
// CHECK-NEXT: %[[LOWER_BOUND:.*]] = arith.constant 0 : index
// CHECK-NEXT: %[[STEP:.*]] = arith.constant 1 : index
// CHECK-NEXT: %[[UPPER_BOUND:.*]] = arith.index_cast %[[ARG0]] : i64 to index
// CHECK-NEXT: %[[LOOP:.*]]:2 = scf.for %[[IV:.*]] = %[[LOWER_BOUND]] to %[[UPPER_BOUND]] step %[[STEP]]
// CHECK-SAME: iter_args(%[[ITER_ARG_0:.*]] = %[[FLOAT_0]], %[[ITER_ARG_1:.*]] = %[[FLOAT_1]]) -> (f64, f64) {
// CHECK-NEXT: %[[IV_I64:.*]] = arith.index_cast %[[IV]] : index to i64
// CHECK-NEXT: %[[TORCH_IV:.*]] = torch_c.from_i64 %[[IV_I64]]
// CHECK-NEXT: %[[TORCH_ITER_ARG_0:.*]] = torch_c.from_f64 %[[ITER_ARG_0]]
// CHECK-NEXT: %[[TORCH_ITER_ARG_1:.*]] = torch_c.from_f64 %[[ITER_ARG_1]]
// CHECK-NEXT: %[[TORCH_VAL_0:.*]] = torch.aten.add.float_int %[[TORCH_ITER_ARG_0]], %[[TORCH_IV]]
// CHECK-NEXT: %[[TORCH_VAL_1:.*]] = torch.aten.mul.float %[[TORCH_ITER_ARG_1]], %[[TORCH_VAL_0]]
// CHECK-NEXT: %[[VAL_0:.*]] = torch_c.to_f64 %[[TORCH_VAL_0]]
// CHECK-NEXT: %[[VAL_1:.*]] = torch_c.to_f64 %[[TORCH_VAL_1]]
// CHECK-NEXT: scf.yield %[[VAL_0]], %[[VAL_1]] : f64, f64
// CHECK-NEXT: }
// CHECK-NEXT: %[[RETURN_0:.*]] = torch_c.from_f64 %[[LOOP]]#0
// CHECK-NEXT: %[[RETURN_1:.*]] = torch_c.from_f64 %[[LOOP]]#1
// CHECK-NEXT: return %[[RETURN_0]], %[[RETURN_1]] : !torch.float, !torch.float
// CHECK-NEXT: }
func.func @torch.prim.Loop$for_with_multiple_results(%arg0: !torch.int) -> (!torch.float, !torch.float) {
%true = torch.constant.bool true
%float0.000000e00 = torch.constant.float 0.000000e+00
%float9.0 = torch.constant.float 9.0
%0:2 = torch.prim.Loop %arg0, %true, init(%float0.000000e00, %float9.0) {
^bb0(%arg1: !torch.int, %arg2: !torch.float, %arg3: !torch.float):
%1 = torch.aten.add.float_int %arg2, %arg1 : !torch.float, !torch.int -> !torch.float
%2 = torch.aten.mul.float %arg3, %1 : !torch.float, !torch.float -> !torch.float
torch.prim.Loop.condition %true, iter(%1, %2 : !torch.float, !torch.float)
} : (!torch.int, !torch.bool, !torch.float, !torch.float) -> (!torch.float, !torch.float)
return %0#0, %0#1 : !torch.float, !torch.float
}
// -----
// CHECK-LABEL: func.func @torch.prim.Loop$for_with_tensor_arg() -> !torch.vtensor<[2,3],f32> {
// CHECK: %[[LOOP_RESULT:.*]] = scf.for %[[LOOP_VARIABLE:.*]] = %[[RANGE_START:.*]] to %[[RANGE_END:.*]] step %[[RANGE_STEP:.*]] iter_args(%[[LOOP_TENSOR_ARG:.*]] = %[[LOOP_TENSOR_ARG_INIT_VAL:.*]]) -> (tensor<2x3xf32>) {
// CHECK: %[[LOOP_TENSOR_ARG_TORCH_TENSOR:.*]] = torch_c.from_builtin_tensor %[[LOOP_TENSOR_ARG]]
// CHECK: }
// CHECK: }
func.func @torch.prim.Loop$for_with_tensor_arg() -> (!torch.vtensor<[2,3],f32>) {
%true = torch.constant.bool true
%int0 = torch.constant.int 0
%int1 = torch.constant.int 1
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%int5 = torch.constant.int 5
%int6 = torch.constant.int 6
%none = torch.constant.none
%0 = torch.prim.ListConstruct %int2, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.zeros %0, %int6, %none, %none, %none : !torch.list<int>, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
%2 = torch.aten.ones %0, %int6, %none, %none, %none : !torch.list<int>, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
%3:1 = torch.prim.Loop %int5, %true, init(%1) {
^bb0(%arg1: !torch.int, %arg2: !torch.vtensor<[2,3],f32>):
%4 = torch.aten.add.Tensor %arg2, %2, %int1 : !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.int -> !torch.vtensor<[2,3],f32>
torch.prim.Loop.condition %true, iter(%4 : !torch.vtensor<[2,3],f32>)
} : (!torch.int, !torch.bool, !torch.vtensor<[2,3],f32>) -> (!torch.vtensor<[2,3],f32>)
return %3#0 : !torch.vtensor<[2,3],f32>
}