torch-mlir/python/torch_mlir_e2e_test/annotations.py

71 lines
2.9 KiB
Python
Raw Permalink Normal View History

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
Add E2E support for tests with heavy dependencies (heavydep tests). The tests use the same (pure-Python) test framework as the normal torchscript_e2e_test.sh, but the tests are added in `build_tools/torchscript_e2e_heavydep_tests` instead of `frontends/pytorch/e2e_testing/torchscript`. Any needed dependencies can easily be configured in generate_serialized_tests.sh. We add an initial machine translation model with a complex set of dependencies to seed the curriculum there. I verified that this model gets to the point of MLIR import (it fails there with a segfault due to not being able to import the "Any" type). This required moving a few files from the `torch_mlir` Python module into multiple modules to isolate the code that depends on our C++ extensions (which now live in `torch_mlir` and `torch_mlir_torchscript_e2e_test_configs`) from the pure Python code (which now lives in `torch_mlir_torchscript`). This is an entirely mechanical change, and lots of imports needed to be updated. The dependency graph is: ``` torch_mlir_torchscript_e2e_test_configs / | / | / | V V torch_mlir_torchscript torch_mlir ``` The `torch_mlir_torchscript_e2e_test_configs` are then dependency-injected into the `torch_mlir_torchscript` modules to successfully assemble a working test harness (the code was already structured this way, but this new file organization allows the isolation from C++ code to actually happen). This isolation is critical to allowing the serialized programs to be transported across PyTorch versions and for the test harness to be used seamlessly to generate the heavydep tests. Also: - Extend `_Tracer` class to support nested property (submodule) accesses. Recommended review order: - "user-level" docs in README.md - code in `build_tools/torchscript_e2e_heavydep_tests`. - changes in `torch_mlir_torchscript/e2e_test/framework.py` - misc mechanical changes.
2021-07-10 03:22:45 +08:00
from typing import List, Optional, Tuple, NamedTuple
import torch
# Decorators
# Currently, these decorators are very low-level and map 1:1 with
# methods on `torch_mlir.ClassAnnotator`. Eventually, we expect there to
# be a more elaborate Python layer which allows all the different annotations
# to be expressed conveniently and gives clearer error reports when
# the annotations aren't acceptable.
# This module is kept separate from torch_mlir.torchscript_annotations so that
# we can use this from code without C++ dependencies, which prevent us from
# interfacing the test framework across environments.
# Attribute names used for annotations.
# These should be kept in sync with their use in
[torch-mlir earthmoving (2/N)] Python code movement. This moves the bulk of the Python code (including the Torch interop) from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also required reconciling a bunch of other Python-related stuff, like the `torch` dialects. As I did this, it was simpler to just remove all the old numpy/basicpy stuff because we were going to delete it anyway and it was faster than debugging an intermediate state that would only last O(days) anyway. torch-mlir has two top-level python packages (built into the `python_packages` directory): - `torch_mlir_dialects`: `torch` dialect Python bindings (does not depend on PyTorch). This also involves building the aggregate CAPI for `torch-mlir`. - `torch_mlir`: bindings to the part of the code that links against PyTorch (or C++ code that transitively does). Additionally, there remain two more Python packages in npcomp (but outside `torch-mlir`): - `npcomp_torch`: Contains the e2e test framework and testing configs that plug into RefBackend and IREE. - `npcomp_core`: Contains the low-level interfaces to RefBackend and IREE that `npcomp_torch` uses, along with its own `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR python bindings. (all other functionality has been stripped out) After all the basicpy/numpy deletions, the `npcomp` C++ code is now very tiny. It basically just contains RefBackend and the `TorchConversion` dialect/passes (e.g. `TorchToLinalg.cpp`). Correspondingly, there are now 4 main testing targets paralleling the Python layering (which is reflective of the deeper underlying dependency structure) - `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code. - `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g. TorchScript import) - `check-frontends-pytorch`: Checks the little code we have in `frontends/pytorch` -- mainly things related to the e2e framework itself. - `check-npcomp`: Checks the pure MLIR C++ code inside npcomp. There is a target `check-npcomp-all` that runs all of them. The `torch-mlir/build_standalone.sh` script does a standalone build of `torch-mlir`. The e2e tests (`tools/torchscript_e2e_test.sh`) are working too. The update_torch_ods script now lives in `torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone build. This change also required a fix upstream related to cross-shlib Python dependencies, so we also update llvm-project to 8dca953dd39c0cd8c80decbeb38753f58a4de580 to get https://reviews.llvm.org/D109776 (no other fixes were needed for the integrate, thankfully). This completes most of the large source code changes. Next will be bringing the CI/packaging/examples back to life.
2021-09-11 02:44:38 +08:00
# `torch_mlir/torchscript_annotations.py`.
TORCH_MLIR_EXPORT_ATTR_NAME = '_torch_mlir_export'
TORCH_MLIR_ARG_ANNOTATIONS_ATTR_NAME = '_torch_mlir_arg_annotations'
Add E2E support for tests with heavy dependencies (heavydep tests). The tests use the same (pure-Python) test framework as the normal torchscript_e2e_test.sh, but the tests are added in `build_tools/torchscript_e2e_heavydep_tests` instead of `frontends/pytorch/e2e_testing/torchscript`. Any needed dependencies can easily be configured in generate_serialized_tests.sh. We add an initial machine translation model with a complex set of dependencies to seed the curriculum there. I verified that this model gets to the point of MLIR import (it fails there with a segfault due to not being able to import the "Any" type). This required moving a few files from the `torch_mlir` Python module into multiple modules to isolate the code that depends on our C++ extensions (which now live in `torch_mlir` and `torch_mlir_torchscript_e2e_test_configs`) from the pure Python code (which now lives in `torch_mlir_torchscript`). This is an entirely mechanical change, and lots of imports needed to be updated. The dependency graph is: ``` torch_mlir_torchscript_e2e_test_configs / | / | / | V V torch_mlir_torchscript torch_mlir ``` The `torch_mlir_torchscript_e2e_test_configs` are then dependency-injected into the `torch_mlir_torchscript` modules to successfully assemble a working test harness (the code was already structured this way, but this new file organization allows the isolation from C++ code to actually happen). This isolation is critical to allowing the serialized programs to be transported across PyTorch versions and for the test harness to be used seamlessly to generate the heavydep tests. Also: - Extend `_Tracer` class to support nested property (submodule) accesses. Recommended review order: - "user-level" docs in README.md - code in `build_tools/torchscript_e2e_heavydep_tests`. - changes in `torch_mlir_torchscript/e2e_test/framework.py` - misc mechanical changes.
2021-07-10 03:22:45 +08:00
def export(fn):
"""Decorator that tells the torch-mlir compiler that a method is exported.
Add E2E support for tests with heavy dependencies (heavydep tests). The tests use the same (pure-Python) test framework as the normal torchscript_e2e_test.sh, but the tests are added in `build_tools/torchscript_e2e_heavydep_tests` instead of `frontends/pytorch/e2e_testing/torchscript`. Any needed dependencies can easily be configured in generate_serialized_tests.sh. We add an initial machine translation model with a complex set of dependencies to seed the curriculum there. I verified that this model gets to the point of MLIR import (it fails there with a segfault due to not being able to import the "Any" type). This required moving a few files from the `torch_mlir` Python module into multiple modules to isolate the code that depends on our C++ extensions (which now live in `torch_mlir` and `torch_mlir_torchscript_e2e_test_configs`) from the pure Python code (which now lives in `torch_mlir_torchscript`). This is an entirely mechanical change, and lots of imports needed to be updated. The dependency graph is: ``` torch_mlir_torchscript_e2e_test_configs / | / | / | V V torch_mlir_torchscript torch_mlir ``` The `torch_mlir_torchscript_e2e_test_configs` are then dependency-injected into the `torch_mlir_torchscript` modules to successfully assemble a working test harness (the code was already structured this way, but this new file organization allows the isolation from C++ code to actually happen). This isolation is critical to allowing the serialized programs to be transported across PyTorch versions and for the test harness to be used seamlessly to generate the heavydep tests. Also: - Extend `_Tracer` class to support nested property (submodule) accesses. Recommended review order: - "user-level" docs in README.md - code in `build_tools/torchscript_e2e_heavydep_tests`. - changes in `torch_mlir_torchscript/e2e_test/framework.py` - misc mechanical changes.
2021-07-10 03:22:45 +08:00
By default, no methods are exported, which is very important for
the compiler, because otherwise most Torch programs consist of a sea
of tiny exported functions with no rank or dtype information
(see `annotate_args`), which the compiler cannot do much with.
Note that this is different from `torch.jit.export`, which controls
which methods are scripted in the first place. For non-`forward` methods,
using this decorator usually means you also need `torch.jit.export`.
Conceptually, this decorator is annotating the scripted module, but is
applied to the original `torch.nn.Module` for convenience.
"""
[torch-mlir earthmoving (2/N)] Python code movement. This moves the bulk of the Python code (including the Torch interop) from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also required reconciling a bunch of other Python-related stuff, like the `torch` dialects. As I did this, it was simpler to just remove all the old numpy/basicpy stuff because we were going to delete it anyway and it was faster than debugging an intermediate state that would only last O(days) anyway. torch-mlir has two top-level python packages (built into the `python_packages` directory): - `torch_mlir_dialects`: `torch` dialect Python bindings (does not depend on PyTorch). This also involves building the aggregate CAPI for `torch-mlir`. - `torch_mlir`: bindings to the part of the code that links against PyTorch (or C++ code that transitively does). Additionally, there remain two more Python packages in npcomp (but outside `torch-mlir`): - `npcomp_torch`: Contains the e2e test framework and testing configs that plug into RefBackend and IREE. - `npcomp_core`: Contains the low-level interfaces to RefBackend and IREE that `npcomp_torch` uses, along with its own `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR python bindings. (all other functionality has been stripped out) After all the basicpy/numpy deletions, the `npcomp` C++ code is now very tiny. It basically just contains RefBackend and the `TorchConversion` dialect/passes (e.g. `TorchToLinalg.cpp`). Correspondingly, there are now 4 main testing targets paralleling the Python layering (which is reflective of the deeper underlying dependency structure) - `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code. - `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g. TorchScript import) - `check-frontends-pytorch`: Checks the little code we have in `frontends/pytorch` -- mainly things related to the e2e framework itself. - `check-npcomp`: Checks the pure MLIR C++ code inside npcomp. There is a target `check-npcomp-all` that runs all of them. The `torch-mlir/build_standalone.sh` script does a standalone build of `torch-mlir`. The e2e tests (`tools/torchscript_e2e_test.sh`) are working too. The update_torch_ods script now lives in `torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone build. This change also required a fix upstream related to cross-shlib Python dependencies, so we also update llvm-project to 8dca953dd39c0cd8c80decbeb38753f58a4de580 to get https://reviews.llvm.org/D109776 (no other fixes were needed for the integrate, thankfully). This completes most of the large source code changes. Next will be bringing the CI/packaging/examples back to life.
2021-09-11 02:44:38 +08:00
setattr(fn, TORCH_MLIR_EXPORT_ATTR_NAME, True)
Add E2E support for tests with heavy dependencies (heavydep tests). The tests use the same (pure-Python) test framework as the normal torchscript_e2e_test.sh, but the tests are added in `build_tools/torchscript_e2e_heavydep_tests` instead of `frontends/pytorch/e2e_testing/torchscript`. Any needed dependencies can easily be configured in generate_serialized_tests.sh. We add an initial machine translation model with a complex set of dependencies to seed the curriculum there. I verified that this model gets to the point of MLIR import (it fails there with a segfault due to not being able to import the "Any" type). This required moving a few files from the `torch_mlir` Python module into multiple modules to isolate the code that depends on our C++ extensions (which now live in `torch_mlir` and `torch_mlir_torchscript_e2e_test_configs`) from the pure Python code (which now lives in `torch_mlir_torchscript`). This is an entirely mechanical change, and lots of imports needed to be updated. The dependency graph is: ``` torch_mlir_torchscript_e2e_test_configs / | / | / | V V torch_mlir_torchscript torch_mlir ``` The `torch_mlir_torchscript_e2e_test_configs` are then dependency-injected into the `torch_mlir_torchscript` modules to successfully assemble a working test harness (the code was already structured this way, but this new file organization allows the isolation from C++ code to actually happen). This isolation is critical to allowing the serialized programs to be transported across PyTorch versions and for the test harness to be used seamlessly to generate the heavydep tests. Also: - Extend `_Tracer` class to support nested property (submodule) accesses. Recommended review order: - "user-level" docs in README.md - code in `build_tools/torchscript_e2e_heavydep_tests`. - changes in `torch_mlir_torchscript/e2e_test/framework.py` - misc mechanical changes.
2021-07-10 03:22:45 +08:00
return fn
ArgAnnotation = Tuple[List[int], torch.dtype]
# TODO: Replace with py3 extended argument annotations when available.
# See https://www.python.org/dev/peps/pep-0593/
def annotate_args(annotations: List[Optional[ArgAnnotation]]):
"""Decorator that tells the torch-mlir compiler information about arguments.
Add E2E support for tests with heavy dependencies (heavydep tests). The tests use the same (pure-Python) test framework as the normal torchscript_e2e_test.sh, but the tests are added in `build_tools/torchscript_e2e_heavydep_tests` instead of `frontends/pytorch/e2e_testing/torchscript`. Any needed dependencies can easily be configured in generate_serialized_tests.sh. We add an initial machine translation model with a complex set of dependencies to seed the curriculum there. I verified that this model gets to the point of MLIR import (it fails there with a segfault due to not being able to import the "Any" type). This required moving a few files from the `torch_mlir` Python module into multiple modules to isolate the code that depends on our C++ extensions (which now live in `torch_mlir` and `torch_mlir_torchscript_e2e_test_configs`) from the pure Python code (which now lives in `torch_mlir_torchscript`). This is an entirely mechanical change, and lots of imports needed to be updated. The dependency graph is: ``` torch_mlir_torchscript_e2e_test_configs / | / | / | V V torch_mlir_torchscript torch_mlir ``` The `torch_mlir_torchscript_e2e_test_configs` are then dependency-injected into the `torch_mlir_torchscript` modules to successfully assemble a working test harness (the code was already structured this way, but this new file organization allows the isolation from C++ code to actually happen). This isolation is critical to allowing the serialized programs to be transported across PyTorch versions and for the test harness to be used seamlessly to generate the heavydep tests. Also: - Extend `_Tracer` class to support nested property (submodule) accesses. Recommended review order: - "user-level" docs in README.md - code in `build_tools/torchscript_e2e_heavydep_tests`. - changes in `torch_mlir_torchscript/e2e_test/framework.py` - misc mechanical changes.
2021-07-10 03:22:45 +08:00
The `annotations` should be a list of the same length as the number of
argument to the method (including `self`). Each list entry is either:
- None, corresponding to providing the compiler with no information.
- A 2-tuple consisting of a shape and a dtype, such as
`([2, 3, 4], torch.float32)`. A dimension with an unknown size can be
indicated by using `-1` as the size. This provides the compiler a
guarantee that the argument will always dynamically have the described
shape and dtype.
"""
# TODO: Check the number of arguments matches the number of arg annotations.
def decorator(fn):
[torch-mlir earthmoving (2/N)] Python code movement. This moves the bulk of the Python code (including the Torch interop) from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also required reconciling a bunch of other Python-related stuff, like the `torch` dialects. As I did this, it was simpler to just remove all the old numpy/basicpy stuff because we were going to delete it anyway and it was faster than debugging an intermediate state that would only last O(days) anyway. torch-mlir has two top-level python packages (built into the `python_packages` directory): - `torch_mlir_dialects`: `torch` dialect Python bindings (does not depend on PyTorch). This also involves building the aggregate CAPI for `torch-mlir`. - `torch_mlir`: bindings to the part of the code that links against PyTorch (or C++ code that transitively does). Additionally, there remain two more Python packages in npcomp (but outside `torch-mlir`): - `npcomp_torch`: Contains the e2e test framework and testing configs that plug into RefBackend and IREE. - `npcomp_core`: Contains the low-level interfaces to RefBackend and IREE that `npcomp_torch` uses, along with its own `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR python bindings. (all other functionality has been stripped out) After all the basicpy/numpy deletions, the `npcomp` C++ code is now very tiny. It basically just contains RefBackend and the `TorchConversion` dialect/passes (e.g. `TorchToLinalg.cpp`). Correspondingly, there are now 4 main testing targets paralleling the Python layering (which is reflective of the deeper underlying dependency structure) - `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code. - `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g. TorchScript import) - `check-frontends-pytorch`: Checks the little code we have in `frontends/pytorch` -- mainly things related to the e2e framework itself. - `check-npcomp`: Checks the pure MLIR C++ code inside npcomp. There is a target `check-npcomp-all` that runs all of them. The `torch-mlir/build_standalone.sh` script does a standalone build of `torch-mlir`. The e2e tests (`tools/torchscript_e2e_test.sh`) are working too. The update_torch_ods script now lives in `torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone build. This change also required a fix upstream related to cross-shlib Python dependencies, so we also update llvm-project to 8dca953dd39c0cd8c80decbeb38753f58a4de580 to get https://reviews.llvm.org/D109776 (no other fixes were needed for the integrate, thankfully). This completes most of the large source code changes. Next will be bringing the CI/packaging/examples back to life.
2021-09-11 02:44:38 +08:00
setattr(fn, TORCH_MLIR_ARG_ANNOTATIONS_ATTR_NAME, annotations)
Add E2E support for tests with heavy dependencies (heavydep tests). The tests use the same (pure-Python) test framework as the normal torchscript_e2e_test.sh, but the tests are added in `build_tools/torchscript_e2e_heavydep_tests` instead of `frontends/pytorch/e2e_testing/torchscript`. Any needed dependencies can easily be configured in generate_serialized_tests.sh. We add an initial machine translation model with a complex set of dependencies to seed the curriculum there. I verified that this model gets to the point of MLIR import (it fails there with a segfault due to not being able to import the "Any" type). This required moving a few files from the `torch_mlir` Python module into multiple modules to isolate the code that depends on our C++ extensions (which now live in `torch_mlir` and `torch_mlir_torchscript_e2e_test_configs`) from the pure Python code (which now lives in `torch_mlir_torchscript`). This is an entirely mechanical change, and lots of imports needed to be updated. The dependency graph is: ``` torch_mlir_torchscript_e2e_test_configs / | / | / | V V torch_mlir_torchscript torch_mlir ``` The `torch_mlir_torchscript_e2e_test_configs` are then dependency-injected into the `torch_mlir_torchscript` modules to successfully assemble a working test harness (the code was already structured this way, but this new file organization allows the isolation from C++ code to actually happen). This isolation is critical to allowing the serialized programs to be transported across PyTorch versions and for the test harness to be used seamlessly to generate the heavydep tests. Also: - Extend `_Tracer` class to support nested property (submodule) accesses. Recommended review order: - "user-level" docs in README.md - code in `build_tools/torchscript_e2e_heavydep_tests`. - changes in `torch_mlir_torchscript/e2e_test/framework.py` - misc mechanical changes.
2021-07-10 03:22:45 +08:00
return fn
return decorator