torch-mlir/e2e_testing/torchscript/constant_alloc.py

500 lines
13 KiB
Python
Raw Normal View History

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import torch
from torch_mlir_e2e_test.torchscript.framework import TestUtils
from torch_mlir_e2e_test.torchscript.registry import register_test_case
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
# ==============================================================================
class ZerosModuleDefaultDtype(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.zeros(3, 4)
@register_test_case(module_factory=lambda: ZerosModuleDefaultDtype())
def ZerosModuleDefaultDtype_basic(module, tu: TestUtils):
module.forward()
class ZerosModuleInt2D(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.zeros(3, 4, dtype=torch.int64)
@register_test_case(module_factory=lambda: ZerosModuleInt2D())
def ZerosModuleInt2D_basic(module, tu: TestUtils):
module.forward()
class ZerosModuleInt3D(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.zeros(3, 4, 5, dtype=torch.int64)
@register_test_case(module_factory=lambda: ZerosModuleInt3D())
def ZerosModuleInt3D_basic(module, tu: TestUtils):
module.forward()
class ZerosModuleFloat2D(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.zeros(3, 4, dtype=torch.float32)
@register_test_case(module_factory=lambda: ZerosModuleFloat2D())
def ZerosModuleFloat2D_basic(module, tu: TestUtils):
module.forward()
class ZerosModuleFloat3D(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.zeros(3, 4, 5, dtype=torch.float32)
@register_test_case(module_factory=lambda: ZerosModuleFloat3D())
def ZerosModuleFloat3D_basic(module, tu: TestUtils):
module.forward()
class ZerosModuleFalsePinMemory(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.zeros(3, 4, dtype=torch.float32, pin_memory=False)
@register_test_case(module_factory=lambda: ZerosModuleFalsePinMemory())
def ZerosModuleFalsePinMemory_basic(module, tu: TestUtils):
module.forward()
# ==============================================================================
class OnesModuleDefaultDtype(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.ones(3, 4)
@register_test_case(module_factory=lambda: OnesModuleDefaultDtype())
def OnesModuleDefaultDtype_basic(module, tu: TestUtils):
module.forward()
class OnesModuleInt(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.ones(3, 4, dtype=torch.int64)
@register_test_case(module_factory=lambda: OnesModuleInt())
def OnesModuleInt_basic(module, tu: TestUtils):
module.forward()
class OnesModuleFloat(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.ones(3, 4, dtype=torch.float32)
@register_test_case(module_factory=lambda: OnesModuleFloat())
def OnesModuleFloat_basic(module, tu: TestUtils):
module.forward()
class OnesModuleFalsePinMemory(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.ones(3, 4, dtype=torch.float32, pin_memory=False)
@register_test_case(module_factory=lambda: OnesModuleFalsePinMemory())
def OnesModuleFalsePinMemory_basic(module, tu: TestUtils):
module.forward()
# ==============================================================================
class EmptyDefaultDtypeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.empty((3, 4)).fill_(0)
@register_test_case(module_factory=lambda: EmptyDefaultDtypeModule())
def EmptyModule_defaultDtype(module, tu: TestUtils):
module.forward()
class EmptyIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.empty((3, 4), dtype=torch.int64).fill_(0)
@register_test_case(module_factory=lambda: EmptyIntModule())
def EmptyModule_int(module, tu: TestUtils):
module.forward()
class EmptyFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.empty((3, 4), dtype=torch.float32).fill_(0)
@register_test_case(module_factory=lambda: EmptyFloatModule())
def EmptyModule_float(module, tu: TestUtils):
module.forward()
class EmptyFalsePinMemoryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
])
def forward(self):
return torch.empty((3, 4), dtype=torch.float32,
pin_memory=False).fill_(0)
@register_test_case(module_factory=lambda: EmptyFalsePinMemoryModule())
def EmptyModule_falsePinMemory(module, tu: TestUtils):
module.forward()
# ==============================================================================
class EmptyLikeDefaultDtypeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.empty_like(a).fill_(0)
@register_test_case(module_factory=lambda: EmptyLikeDefaultDtypeModule())
def EmptyLikeModule_defaultDtype(module, tu: TestUtils):
module.forward(tu.rand(3, 5))
class EmptyLikeIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.int64, True),
])
def forward(self, a):
return torch.empty_like(a, dtype=torch.int32).fill_(0)
@register_test_case(module_factory=lambda: EmptyLikeIntModule())
def EmptyLikeModule_int(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 5)))
class EmptyLikeFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.empty_like(a, dtype=torch.float32).fill_(0)
@register_test_case(module_factory=lambda: EmptyLikeFloatModule())
def EmptyLikeModule_float(module, tu: TestUtils):
module.forward(tu.rand(4, 5))
class EmptyLikeFalsePinMemoryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.empty_like(a, dtype=torch.float64,
pin_memory=False).fill_(0)
@register_test_case(module_factory=lambda: EmptyLikeFalsePinMemoryModule())
def EmptyLikeModule_falsePinMemory(module, tu: TestUtils):
module.forward(tu.rand(2, 3, 4))
# ==============================================================================
class ZerosLikeDefaultDtypeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.zeros_like(a)
@register_test_case(module_factory=lambda: ZerosLikeDefaultDtypeModule())
def ZerosLikeModule_defaultDtype(module, tu: TestUtils):
module.forward(tu.rand(3, 5))
class ZerosLikeIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.int64, True),
])
def forward(self, a):
return torch.zeros_like(a, dtype=torch.int32)
@register_test_case(module_factory=lambda: ZerosLikeIntModule())
def ZerosLikeModule_int(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 5)))
class ZerosLikeFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.zeros_like(a, dtype=torch.float32)
@register_test_case(module_factory=lambda: ZerosLikeFloatModule())
def ZerosLikeModule_float(module, tu: TestUtils):
module.forward(tu.rand(4, 5))
class ZerosLikeFalsePinMemoryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.zeros_like(a, dtype=torch.float64, pin_memory=False)
@register_test_case(module_factory=lambda: ZerosLikeFalsePinMemoryModule())
def ZerosLikeModule_falsePinMemory(module, tu: TestUtils):
module.forward(tu.rand(2, 3, 4))
# ==============================================================================
class OnesLikeDefaultDtypeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ones_like(a)
@register_test_case(module_factory=lambda: OnesLikeDefaultDtypeModule())
def OnesLikeModule_defaultDtype(module, tu: TestUtils):
module.forward(tu.rand(3, 5))
class OnesLikeIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.int64, True),
])
def forward(self, a):
return torch.ones_like(a, dtype=torch.int32)
@register_test_case(module_factory=lambda: OnesLikeIntModule())
def OnesLikeModule_int(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 5)))
class OnesLikeFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ones_like(a, dtype=torch.float32)
@register_test_case(module_factory=lambda: OnesLikeFloatModule())
def OnesLikeModule_float(module, tu: TestUtils):
module.forward(tu.rand(4, 5))
class OnesLikeFalsePinMemoryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ones_like(a, dtype=torch.float64, pin_memory=False)
@register_test_case(module_factory=lambda: OnesLikeFalsePinMemoryModule())
def OnesLikeModule_falsePinMemory(module, tu: TestUtils):
module.forward(tu.rand(2, 3, 4))
# ==============================================================================
class Fill_TensorFloat64WithFloat32(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, tensor):
return torch.ops.aten.fill_(tensor, 3.0)
@register_test_case(module_factory=lambda: Fill_TensorFloat64WithFloat32())
def Fill_TensorFloat64WithFloat32_basic(module, tu: TestUtils):
module.forward(torch.randn(3, 2, 4))
class Fill_TensorFloat64WithFloat64(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, tensor):
return torch.ops.aten.fill_(tensor, 3.0)
@register_test_case(module_factory=lambda: Fill_TensorFloat64WithFloat64())
def Fill_TensorFloat64WithFloat64_basic(module, tu: TestUtils):
module.forward(torch.randn(3, 2, 4).to(torch.float64))
class Fill_TensorFloat64WithInt64(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, tensor):
return torch.ops.aten.fill_(tensor, 3)
@register_test_case(module_factory=lambda: Fill_TensorFloat64WithInt64())
def Fill_TensorFloat64WithInt64_basic(module, tu: TestUtils):
module.forward(torch.randn(3, 2, 4).to(torch.float64))