2021-10-21 13:15:10 +08:00
|
|
|
// RUN: torch-mlir-opt -torch-decompose-complex-ops -split-input-file %s | FileCheck %s
|
|
|
|
|
|
|
|
// CHECK-LABEL: func @matmul_no_decompose
|
|
|
|
// CHECK: torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
|
|
|
|
func @matmul_no_decompose(%arg0: !torch.vtensor<[?,?,?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?],f32>) -> !torch.tensor {
|
|
|
|
%0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
|
|
|
|
return %0 : !torch.tensor
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -----
|
|
|
|
|
|
|
|
// CHECK-LABEL: func @matmul_decompose_2d
|
|
|
|
// CHECK: torch.aten.mm %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.tensor
|
|
|
|
func @matmul_decompose_2d(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.tensor {
|
|
|
|
%0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.tensor
|
|
|
|
return %0 : !torch.tensor
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @matmul_decompose_3d(
|
|
|
|
// CHECK: torch.aten.bmm %arg0, %arg1 : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
|
|
|
|
func @matmul_decompose_3d(%arg0: !torch.vtensor<[?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?],f32>) -> !torch.tensor {
|
|
|
|
%0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
|
|
|
|
return %0 : !torch.tensor
|
|
|
|
}
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.softmax.int(
|
|
|
|
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[2,3],f32>,
|
|
|
|
// CHECK-SAME: %[[DIM:.*]]: !torch.int) -> !torch.tensor<[2,3],f32> {
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
2022-02-01 03:56:32 +08:00
|
|
|
// CHECK: %[[KEEP_DIM0:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[KEEP_DIM0]] :
|
|
|
|
// CHECK-SAME: !torch.tensor<[2,3],f32>, !torch.int, !torch.bool -> !torch.tensor<[?,?],f32>, !torch.tensor<[?,?],si64>
|
|
|
|
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<[2,3],f32>,
|
|
|
|
// CHECK-SAME: !torch.tensor<[?,?],f32>, !torch.float -> !torch.tensor<[2,3],f32>
|
|
|
|
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<[2,3],f32> -> !torch.tensor<[2,3],f32>
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<!torch.int>
|
|
|
|
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
|
|
|
|
// CHECK-SAME: !torch.tensor<[2,3],f32>, !torch.list<!torch.int>, !torch.bool, !torch.none -> !torch.tensor<[?,?],f32>
|
|
|
|
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<[2,3],f32>, !torch.tensor<[?,?],f32> -> !torch.tensor<[2,3],f32>
|
|
|
|
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<[2,3],f32> to !torch.tensor<[2,3],f32>
|
|
|
|
// CHECK: return %[[RET]] : !torch.tensor<[2,3],f32>
|
|
|
|
func @torch.aten.softmax.int(%t: !torch.tensor<[2,3],f32>, %dim: !torch.int) -> !torch.tensor<[2,3],f32> {
|
|
|
|
%dtype = torch.constant.none
|
|
|
|
%ret = torch.aten.softmax.int %t, %dim, %dtype: !torch.tensor<[2,3],f32>, !torch.int, !torch.none -> !torch.tensor<[2,3],f32>
|
|
|
|
return %ret : !torch.tensor<[2,3],f32>
|
|
|
|
}
|
|
|
|
|
2022-02-01 03:56:32 +08:00
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.softmax.int$cst_dim(
|
|
|
|
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[2,3],f32>) -> !torch.tensor<[2,3],f32> {
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[DIM:.*]] = torch.constant.int 1
|
2022-02-01 03:56:32 +08:00
|
|
|
// CHECK: %[[TRU:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[TRU]] : !torch.tensor<[2,3],f32>, !torch.int, !torch.bool ->
|
|
|
|
// CHECK-SAME: !torch.tensor<[2,1],f32>, !torch.tensor<[2,1],si64>
|
|
|
|
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<[2,3],f32>,
|
|
|
|
// CHECK-SAME: !torch.tensor<[2,1],f32>, !torch.float -> !torch.tensor<[2,3],f32>
|
|
|
|
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<[2,3],f32> -> !torch.tensor<[2,3],f32>
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<!torch.int>
|
|
|
|
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
|
|
|
|
// CHECK-SAME !torch.tensor<[2,3],f32>, !torch.list<!torch.int>, !torch.bool, !torch.none -> !torch.tensor<[2,1],f32>
|
|
|
|
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<[2,3],f32>, !torch.tensor<[2,1],f32> -> !torch.tensor<[2,3],f32>
|
|
|
|
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<[2,3],f32> to !torch.tensor<[2,3],f32>
|
|
|
|
// CHECK: return %[[RET]] : !torch.tensor<[2,3],f32>
|
|
|
|
func @torch.aten.softmax.int$cst_dim(%t: !torch.tensor<[2,3],f32>) -> !torch.tensor<[2,3],f32> {
|
|
|
|
%none = torch.constant.none
|
|
|
|
%dim = torch.constant.int 1
|
|
|
|
%ret = torch.aten.softmax.int %t, %dim, %none : !torch.tensor<[2,3],f32>, !torch.int, !torch.none -> !torch.tensor<[2,3],f32>
|
|
|
|
return %ret : !torch.tensor<[2,3],f32>
|
|
|
|
}
|
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.softmax.int$dyn_shape(
|
|
|
|
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[?,?],f32>) -> !torch.tensor<[?,?],f32> {
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[DIM:.*]] = torch.constant.int 1
|
2022-02-01 03:56:32 +08:00
|
|
|
// CHECK: %[[TRU:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[TRU]] : !torch.tensor<[?,?],f32>, !torch.int, !torch.bool ->
|
|
|
|
// CHECK-SAME: !torch.tensor<[?,1],f32>, !torch.tensor<[?,1],si64>
|
|
|
|
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<[?,?],f32>,
|
|
|
|
// CHECK-SAME: !torch.tensor<[?,1],f32>, !torch.float -> !torch.tensor<[?,?],f32>
|
|
|
|
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<[?,?],f32> -> !torch.tensor<[?,?],f32>
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<!torch.int>
|
|
|
|
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
|
|
|
|
// CHECK-SAME: !torch.tensor<[?,?],f32>, !torch.list<!torch.int>, !torch.bool, !torch.none -> !torch.tensor<[?,1],f32>
|
|
|
|
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<[?,?],f32>, !torch.tensor<[?,1],f32> -> !torch.tensor<[?,?],f32>
|
|
|
|
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<[?,?],f32> to !torch.tensor<[?,?],f32>
|
|
|
|
// CHECK: return %[[RET]] : !torch.tensor<[?,?],f32>
|
|
|
|
func @torch.aten.softmax.int$dyn_shape(%t: !torch.tensor<[?,?],f32>) -> !torch.tensor<[?,?],f32> {
|
|
|
|
%none = torch.constant.none
|
|
|
|
%dim = torch.constant.int 1
|
|
|
|
%ret = torch.aten.softmax.int %t, %dim, %none : !torch.tensor<[?,?],f32>, !torch.int, !torch.none -> !torch.tensor<[?,?],f32>
|
|
|
|
return %ret : !torch.tensor<[?,?],f32>
|
|
|
|
}
|
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.softmax.int$unknown_shape(
|
|
|
|
// CHECK-SAME: %[[T:.*]]: !torch.tensor<*,f32>) -> !torch.tensor<*,f32> {
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[DIM:.*]] = torch.constant.int 1
|
2022-02-01 03:56:32 +08:00
|
|
|
// CHECK: %[[TRU:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[TRU]] : !torch.tensor<*,f32>, !torch.int, !torch.bool
|
|
|
|
// CHECK-SAME: -> !torch.tensor<*,f32>, !torch.tensor<*,si64>
|
|
|
|
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<*,f32>, !torch.tensor<*,f32>,
|
|
|
|
// CHECK-SAME: !torch.float -> !torch.tensor<*,f32>
|
|
|
|
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<*,f32> -> !torch.tensor<*,f32>
|
Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).
The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.
For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.
By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.
For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.
The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515
Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
|
|
|
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<!torch.int>
|
|
|
|
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
|
|
|
|
// CHECK-SAME: !torch.tensor<*,f32>, !torch.list<!torch.int>, !torch.bool, !torch.none -> !torch.tensor<*,f32>
|
|
|
|
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<*,f32>, !torch.tensor<*,f32> -> !torch.tensor<*,f32>
|
|
|
|
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<*,f32> to !torch.tensor<*,f32>
|
|
|
|
// CHECK: return %[[RET]] : !torch.tensor<*,f32>
|
|
|
|
func @torch.aten.softmax.int$unknown_shape(%t: !torch.tensor<*,f32>) -> !torch.tensor<*,f32> {
|
|
|
|
%none = torch.constant.none
|
|
|
|
%dim = torch.constant.int 1
|
|
|
|
%ret = torch.aten.softmax.int %t, %dim, %none : !torch.tensor<*,f32>, !torch.int, !torch.none -> !torch.tensor<*,f32>
|
|
|
|
return %ret : !torch.tensor<*,f32>
|
|
|
|
}
|
2021-11-08 23:56:40 +08:00
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
2021-11-08 23:56:40 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.size(
|
|
|
|
// CHECK-SAME: %[[T:.*]]: !torch.vtensor<[?,3],f32>) -> !torch.list<!torch.int> {
|
|
|
|
// CHECK: %[[CST0:.*]] = torch.constant.int 0
|
|
|
|
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[T]], %[[CST0]] : !torch.vtensor<[?,3],f32>, !torch.int -> !torch.int
|
|
|
|
// CHECK: %[[CST1:.*]] = torch.constant.int 1
|
|
|
|
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[T]], %[[CST1]] : !torch.vtensor<[?,3],f32>, !torch.int -> !torch.int
|
|
|
|
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]] : (!torch.int, !torch.int) -> !torch.list<!torch.int>
|
|
|
|
// CHECK: return %[[SIZE]] : !torch.list<!torch.int>
|
|
|
|
func @torch.aten.size(%arg0: !torch.vtensor<[?,3],f32>) -> !torch.list<!torch.int> {
|
|
|
|
%0 = torch.aten.size %arg0 : !torch.vtensor<[?,3],f32> -> !torch.list<!torch.int>
|
|
|
|
return %0 : !torch.list<!torch.int>
|
|
|
|
}
|
2021-12-23 21:22:45 +08:00
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
2021-12-23 21:22:45 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.arange() -> !torch.vtensor<[?],si64> {
|
|
|
|
// CHECK: %[[CST5:.*]] = torch.constant.int 5
|
|
|
|
// CHECK: %[[CSTN:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[CST0:.*]] = torch.constant.int 0
|
|
|
|
// CHECK: %[[CST1:.*]] = torch.constant.int 1
|
|
|
|
// CHECK: %[[RESULT:.*]] = torch.aten.arange.start_step %[[CST0]], %[[CST5]], %[[CST1]], %[[CSTN]], %[[CSTN]], %[[CSTN]], %[[CSTN]] :
|
|
|
|
// CHECK-SAME: !torch.int, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
|
|
|
|
// CHECK: return %[[RESULT]] : !torch.vtensor<[?],si64>
|
|
|
|
func @torch.aten.arange() -> !torch.vtensor<[?],si64> {
|
|
|
|
%int5 = torch.constant.int 5
|
|
|
|
%none = torch.constant.none
|
|
|
|
%0 = torch.aten.arange %int5, %none, %none, %none, %none : !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
|
|
|
|
return %0 : !torch.vtensor<[?],si64>
|
|
|
|
}
|
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
2021-12-23 21:22:45 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.arange.start() -> !torch.vtensor<[?],si64> {
|
|
|
|
// CHECK: %[[CST10:.*]] = torch.constant.int 10
|
|
|
|
// CHECK: %[[CST0:.*]] = torch.constant.int 0
|
|
|
|
// CHECK: %[[CSTN:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[CST1:.*]] = torch.constant.int 1
|
|
|
|
// CHECK: %[[RESULT:.*]] = torch.aten.arange.start_step %[[CST0]], %[[CST10]], %[[CST1]], %[[CSTN]], %[[CSTN]], %[[CSTN]], %[[CSTN]] :
|
|
|
|
// CHECK-SAME: !torch.int, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
|
|
|
|
// CHECK: return %[[RESULT]] : !torch.vtensor<[?],si64>
|
|
|
|
func @torch.aten.arange.start() -> !torch.vtensor<[?],si64> {
|
|
|
|
%int10 = torch.constant.int 10
|
|
|
|
%int0 = torch.constant.int 0
|
|
|
|
%none = torch.constant.none
|
|
|
|
%0 = torch.aten.arange.start %int0, %int10, %none, %none, %none, %none : !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
|
|
|
|
return %0 : !torch.vtensor<[?],si64>
|
|
|
|
}
|
2022-01-25 16:53:55 +08:00
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
2022-01-25 16:53:55 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.argmax(
|
|
|
|
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[1,?],si64> {
|
|
|
|
// CHECK: %[[CST0:.*]] = torch.constant.int 0
|
|
|
|
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[INP]], %[[CST0]], %[[TRUE]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[1,?],f32>, !torch.vtensor<[1,?],si64>
|
|
|
|
// CHECK: return %[[IND]] : !torch.vtensor<[1,?],si64>
|
|
|
|
func @torch.aten.argmax(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[1,?],si64> {
|
|
|
|
%int0 = torch.constant.int 0
|
|
|
|
%true = torch.constant.bool true
|
|
|
|
%0 = torch.aten.argmax %arg0, %int0, %true : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[1,?],si64>
|
|
|
|
return %0 : !torch.vtensor<[1,?],si64>
|
|
|
|
}
|
|
|
|
|
2022-02-10 16:11:05 +08:00
|
|
|
// -----
|
2022-01-25 16:53:55 +08:00
|
|
|
// CHECK-LABEL: func @torch.aten.argmax$reduceall(
|
|
|
|
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],si64> {
|
|
|
|
// CHECK: %[[NONE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
|
|
|
|
// CHECK: %[[CST0:.*]] = torch.constant.int 0
|
|
|
|
// CHECK: %[[CST1:.*]] = torch.constant.int 1
|
|
|
|
// CHECK: %[[FLATTEN:.*]] = torch.aten.flatten.using_ints %[[INP]], %[[CST0]], %[[CST1]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.int -> !torch.vtensor<[?],f32>
|
|
|
|
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[FLATTEN]], %[[CST0]], %[[FALSE]] : !torch.vtensor<[?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[],f32>, !torch.vtensor<[],si64>
|
|
|
|
// CHECK: return %[[IND]] : !torch.vtensor<[],si64>
|
|
|
|
func @torch.aten.argmax$reduceall(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],si64> {
|
|
|
|
%none = torch.constant.none
|
|
|
|
%false = torch.constant.bool false
|
|
|
|
%0 = torch.aten.argmax %arg0, %none, %false : !torch.vtensor<[?,?],f32>, !torch.none, !torch.bool -> !torch.vtensor<[],si64>
|
|
|
|
return %0 : !torch.vtensor<[],si64>
|
|
|
|
}
|
2022-01-30 01:10:50 +08:00
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @torch.aten.square(
|
|
|
|
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
|
|
|
|
// CHECK: %[[SQUARE:.*]] = torch.aten.mul.Tensor %[[INPUT]], %[[INPUT]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: return %[[SQUARE]] : !torch.vtensor<[?,?,?],f32>
|
|
|
|
func @torch.aten.square(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
|
|
|
|
%0 = torch.aten.square %arg0 : !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
return %0 : !torch.vtensor<[?,?,?],f32>
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @torch.aten.var$unbiased(
|
|
|
|
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
// CHECK: %[[UNBIASED:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum %[[INPUT]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.numel %[[INPUT]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum %[[SUB_MEAN_SQUARE]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_NUM_ELEMENTS:.*]] = torch.aten.numel %[[SUB_MEAN_SQUARE]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[CST1:.*]] = torch.constant.int 1
|
|
|
|
// CHECK: %[[NUM_ELEMENTS_SUB1:.*]] = torch.aten.sub.int %[[SUB_MEAN_SQUARE_NUM_ELEMENTS]], %[[CST1]] : !torch.int, !torch.int -> !torch.int
|
|
|
|
// CHECK: %[[UNBIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_SUB1]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: return %[[UNBIASED_VAR]] : !torch.vtensor<[],f32>
|
|
|
|
func @torch.aten.var$unbiased(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
%true = torch.constant.bool true
|
|
|
|
%0 = torch.aten.var %arg0, %true: !torch.vtensor<[?,?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
|
|
|
|
return %0 : !torch.vtensor<[],f32>
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @torch.aten.var$biased(
|
|
|
|
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
// CHECK: %[[UNBIASED:.*]] = torch.constant.bool false
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum %[[INPUT]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.numel %[[INPUT]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum %[[SUB_MEAN_SQUARE]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_NUM_ELEMENTS:.*]] = torch.aten.numel %[[SUB_MEAN_SQUARE]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[BIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[SUB_MEAN_SQUARE_NUM_ELEMENTS]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: return %[[BIASED_VAR]] : !torch.vtensor<[],f32>
|
|
|
|
func @torch.aten.var$biased(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
%false = torch.constant.bool false
|
|
|
|
%0 = torch.aten.var %arg0, %false: !torch.vtensor<[?,?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
|
|
|
|
return %0 : !torch.vtensor<[],f32>
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @torch.aten.std$unbiased(
|
|
|
|
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
// CHECK: %[[UNBIASED:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum %[[INPUT]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.numel %[[INPUT]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum %[[SUB_MEAN_SQUARE]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_NUM_ELEMENTS:.*]] = torch.aten.numel %[[SUB_MEAN_SQUARE]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[CST1:.*]] = torch.constant.int 1
|
|
|
|
// CHECK: %[[NUM_ELEMENTS_SUB1:.*]] = torch.aten.sub.int %[[SUB_MEAN_SQUARE_NUM_ELEMENTS]], %[[CST1]] : !torch.int, !torch.int -> !torch.int
|
|
|
|
// CHECK: %[[UNBIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_SUB1]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[UNBIASED_STD:.*]] = torch.aten.sqrt %[[UNBIASED_VAR]] : !torch.vtensor<[],f32> -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: return %[[UNBIASED_STD]] : !torch.vtensor<[],f32>
|
|
|
|
func @torch.aten.std$unbiased(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
%true = torch.constant.bool true
|
|
|
|
%0 = torch.aten.std %arg0, %true: !torch.vtensor<[?,?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
|
|
|
|
return %0 : !torch.vtensor<[],f32>
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @torch.aten.std$biased(
|
|
|
|
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
// CHECK: %[[UNBIASED:.*]] = torch.constant.bool false
|
|
|
|
// CHECK: %[[DTYPE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM:.*]] = torch.aten.sum %[[INPUT]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.numel %[[INPUT]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum %[[SUB_MEAN_SQUARE]], %[[DTYPE]] : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[SUB_MEAN_SQUARE_NUM_ELEMENTS:.*]] = torch.aten.numel %[[SUB_MEAN_SQUARE]] : !torch.vtensor<[?,?,?],f32> -> !torch.int
|
|
|
|
// CHECK: %[[BIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[SUB_MEAN_SQUARE_NUM_ELEMENTS]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: %[[BIASED_STD:.*]] = torch.aten.sqrt %[[BIASED_VAR]] : !torch.vtensor<[],f32> -> !torch.vtensor<[],f32>
|
|
|
|
// CHECK: return %[[BIASED_STD]] : !torch.vtensor<[],f32>
|
|
|
|
func @torch.aten.std$biased(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[],f32> {
|
|
|
|
%false = torch.constant.bool false
|
|
|
|
%0 = torch.aten.std %arg0, %false: !torch.vtensor<[?,?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
|
|
|
|
return %0 : !torch.vtensor<[],f32>
|
|
|
|
}
|
2022-02-10 16:11:05 +08:00
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @torch.aten._unsafe_view$static
|
|
|
|
// CHECK-SAME: (%[[ARG0:.*]]: !torch.vtensor<[1,512,32],f32>)
|
|
|
|
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct
|
|
|
|
// CHECK-NOT: torch.aten._unsafe_view
|
|
|
|
// CHECK-NEXT: %[[RES:.*]] = torch.aten.view %[[ARG0]], %[[LIST]]
|
|
|
|
// CHECK-NEXT: return
|
|
|
|
func @torch.aten._unsafe_view$static(%arg0: !torch.vtensor<[1,512,32],f32>) -> !torch.vtensor<[1,2,256,32],f32> {
|
|
|
|
%c1 = torch.constant.int 1
|
|
|
|
%c2 = torch.constant.int 2
|
|
|
|
%c256 = torch.constant.int 256
|
|
|
|
%c32 = torch.constant.int 32
|
|
|
|
%0 = torch.prim.ListConstruct %c1, %c2, %c256, %c32 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<!torch.int>
|
|
|
|
%1 = torch.aten._unsafe_view %arg0, %0 : !torch.vtensor<[1,512,32],f32>, !torch.list<!torch.int> -> !torch.vtensor<[1,2,256,32],f32>
|
|
|
|
return %1 : !torch.vtensor<[1,2,256,32],f32>
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @torch.aten._unsafe_view$dynamic
|
|
|
|
// CHECK-SAME: (%[[ARG0:.*]]: !torch.vtensor<[?,?,?],f32>)
|
|
|
|
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct
|
|
|
|
// CHECK-NOT: torch.aten._unsafe_view
|
|
|
|
// CHECK-NEXT: %[[RES:.*]] = torch.aten.view %[[ARG0]], %[[LIST]]
|
|
|
|
// CHECK-NEXT: return
|
|
|
|
func @torch.aten._unsafe_view$dynamic(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[512,32],f32> {
|
|
|
|
%c256 = torch.constant.int 512
|
|
|
|
%c32 = torch.constant.int 32
|
|
|
|
%0 = torch.prim.ListConstruct %c256, %c32 : (!torch.int, !torch.int) -> !torch.list<!torch.int>
|
|
|
|
%1 = torch.aten._unsafe_view %arg0, %0 : !torch.vtensor<[?,?,?],f32>, !torch.list<!torch.int> -> !torch.vtensor<[512,32],f32>
|
|
|
|
return %1 : !torch.vtensor<[512,32],f32>
|
|
|
|
}
|
2022-02-10 15:05:23 +08:00
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @_log.softmax(
|
|
|
|
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
|
|
|
|
// CHECK: %[[INT0:.*]] = torch.constant.int 0
|
|
|
|
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
|
|
|
|
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[INP]], %[[INT0]], %[[TRUE]] : !torch.vtensor<[?,?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[1,?,?],f32>, !torch.vtensor<[1,?,?],si64>
|
|
|
|
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[INP]], %[[VAL]], %[[FLOAT1]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[1,?,?],f32>, !torch.float -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[PRIM:.*]] = torch.prim.ListConstruct %[[INT0]] : (!torch.int) -> !torch.list<!torch.int>
|
|
|
|
// CHECK: %[[TRU:.*]] = torch.constant.bool true
|
|
|
|
// CHECK: %[[NONE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[SUM_DIM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[PRIM]], %[[TRU]], %[[NONE]] : !torch.vtensor<[?,?,?],f32>, !torch.list<!torch.int>, !torch.bool, !torch.none -> !torch.vtensor<[1,?,?],f32>
|
|
|
|
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM_DIM]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[1,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.vtensor<[?,?,?],f32> to !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[LOG:.*]] = torch.aten.log %[[CAST]] : !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: return %[[LOG]] : !torch.vtensor<[?,?,?],f32>
|
|
|
|
func @_log.softmax(%arg0: !torch.vtensor<[?,?,?],f32> loc(unknown)) -> !torch.vtensor<[?,?,?],f32> {
|
|
|
|
%int0 = torch.constant.int 0
|
|
|
|
%false = torch.constant.bool false
|
|
|
|
%0 = torch.aten._log_softmax %arg0, %int0, %false : !torch.vtensor<[?,?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
return %0 : !torch.vtensor<[?,?,?],f32>
|
|
|
|
}
|
2022-02-04 19:43:25 +08:00
|
|
|
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: func @bernoulli
|
|
|
|
// CHECK-SAME: (%[[INP:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor {
|
|
|
|
// CHECK: %[[NONE:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[INT6:.*]] = torch.constant.int 6
|
|
|
|
// CHECK: %[[FLOAT0_5:.*]] = torch.constant.float 5.000000e-01
|
|
|
|
// CHECK: %[[FLOAT0:.*]] = torch.constant.float 0.000000e+00
|
|
|
|
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
|
|
|
|
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
|
|
|
|
// CHECK: %[[NONE0:.*]] = torch.constant.none
|
|
|
|
// CHECK: %[[UNF:.*]] = torch.pseudo.aten.uniform %[[INP]], %[[FLOAT0]], %[[FLOAT1]], %[[NONE0]] : !torch.vtensor<[?,?,?],f32>, !torch.float, !torch.float, !torch.none -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[GT:.*]] = torch.aten.lt.Scalar %[[UNF]], %[[FLOAT0_5]] : !torch.vtensor<[?,?,?],f32>, !torch.float -> !torch.vtensor<[?,?,?],i1>
|
|
|
|
// CHECK: %[[TODTYPE:.*]] = torch.aten.to.dtype %[[GT]], %[[INT6]], %[[FALSE]], %[[FALSE]], %[[NONE0]] : !torch.vtensor<[?,?,?],i1>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[TODTYPE]] : !torch.vtensor<[?,?,?],f32> to !torch.vtensor
|
|
|
|
// CHECK: return %[[CAST]] : !torch.vtensor
|
|
|
|
func @bernoulli(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor {
|
|
|
|
%none = torch.constant.none
|
|
|
|
%0 = torch.aten.bernoulli %arg0, %none : !torch.vtensor<[?,?,?],f32>, !torch.none -> !torch.vtensor<[?,?,?],f32>
|
|
|
|
%1 = torch.tensor_static_info_cast %0 : !torch.vtensor<[?,?,?],f32> to !torch.vtensor
|
|
|
|
return %1 : !torch.vtensor
|
|
|
|
}
|