torch-mlir/lib/Conversion/TorchToStablehlo/GatherScatter.cpp

548 lines
21 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h"
#include "../PassDetail.h"
#include "PopulatePatterns.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "stablehlo/dialect/StablehloOps.h"
#include "torch-mlir/Conversion/TorchToStablehlo/StablehloLegalizeUtils.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
using namespace mlir::torch::torch_to_stablehlo;
namespace {
Value gatherTensorAlongSingleAxis(PatternRewriter &rewriter, Operation *op,
Value input, Value indices, int64_t axis,
size_t dimSizeIndexBits) {
auto loc = op->getLoc();
Type intType = rewriter.getIntegerType(dimSizeIndexBits);
Value one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));
// sliceSizes
auto inputRankTy = input.getType().dyn_cast<RankedTensorType>();
auto inputRank = inputRankTy.getRank();
SmallVector<Value, 4> sliceSizes;
sliceSizes.reserve(inputRank);
for (int64_t r = 0; r < inputRank; ++r) {
if (r == axis) {
sliceSizes.push_back(one);
} else {
sliceSizes.push_back(rewriter.create<arith::IndexCastOp>(
loc, intType, rewriter.create<tensor::DimOp>(loc, input, r)));
}
}
auto sliceSizesTensor =
rewriter.create<tensor::FromElementsOp>(loc, sliceSizes);
// offsetDims
SmallVector<int64_t, 4> offsetDims;
offsetDims.reserve(inputRank);
for (int64_t r = 0; r < axis; ++r) {
offsetDims.push_back(r);
}
auto indicesRankTy = indices.getType().dyn_cast<RankedTensorType>();
auto indicesRank = indicesRankTy.getRank();
for (int64_t r = axis + 1; r < inputRank; ++r) {
offsetDims.push_back(r + indicesRank - 1);
}
// collapsedSliceDims
SmallVector<int64_t, 4> collapsedSliceDims(1, axis);
// startIndexMap
SmallVector<int64_t, 4> startIndexMap(1, axis);
// indexVecDim
int64_t indexVecDim = indicesRank;
auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get(
rewriter.getContext(),
/*offsetDims=*/offsetDims,
/*collapsedSliceDims=*/collapsedSliceDims,
/*startIndexMap=*/startIndexMap,
/*indexVecDim=*/indexVecDim);
// outputShape = input.shape[:axis] + indices.shape +
// input.shape[axis + 1:]
auto inputShape = inputRankTy.getShape();
auto indicesShape = indicesRankTy.getShape();
SmallVector<int64_t, 4> outputShape(inputShape.begin(),
inputShape.begin() + axis);
outputShape.insert(outputShape.end(), indicesShape.begin(),
indicesShape.end());
outputShape.insert(outputShape.end(), inputShape.begin() + axis + 1,
inputShape.end());
// create output tensor type
auto outputTy =
RankedTensorType::get(outputShape, inputRankTy.getElementType());
return rewriter
.create<stablehlo::DynamicGatherOp>(loc, outputTy, input, indices,
sliceSizesTensor, dimsAttr)
.getResult();
}
template <typename OpTy, typename OpAdaptor>
LogicalResult prepareArgumentsForSlicingOp(OpTy op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
SmallVector<Value> &resultShape,
SmallVector<Value> &offsets,
SmallVector<Value> &strides) {
Location loc = op.getLoc();
auto input = adaptor.getSelf();
RankedTensorType inputType =
input.getType().template cast<RankedTensorType>();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return op->emitError("unimplemented: dim is not constant");
int64_t inputRank = inputType.getRank();
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
Value dimSize = inputShape[dim];
Value torchTypeStart = op.getStart();
Value torchTypeEnd = op.getEnd();
Value builtinTypeStart = adaptor.getStart();
Value builtinTypeEnd = adaptor.getEnd();
if (torchTypeStart.getType().isa<OptionalType>() ||
torchTypeEnd.getType().isa<OptionalType>())
return rewriter.notifyMatchFailure(op, "unimplemented optional type arg");
int64_t step;
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) {
if (!op.getStep().getType().template isa<Torch::NoneType>())
return op->emitError("unimplemented: step is not constant");
step = 1;
}
Value start = toPositiveValidDim(rewriter, loc, torchTypeStart,
builtinTypeStart, zero, dimSize);
Value end = toPositiveValidDim(rewriter, loc, torchTypeEnd, builtinTypeEnd,
dimSize, dimSize);
// end >= start ? end : start
Value endSgeStart = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, end, start);
end = rewriter.create<arith::SelectOp>(loc, endSgeStart, end, start);
Value stepIndex = rewriter.create<arith::ConstantIndexOp>(loc, step);
// Slice logic: resultSize = floordiv(end - start + step - 1, step)
resultShape = getTensorSizes(rewriter, loc, input);
Value len = rewriter.create<arith::SubIOp>(loc, end, start);
Value resultSize = rewriter.create<arith::AddIOp>(loc, len, stepIndex);
resultSize = rewriter.create<arith::SubIOp>(loc, resultSize, one);
resultSize = rewriter.create<arith::FloorDivSIOp>(loc, resultSize, stepIndex);
resultShape[dim] = resultSize;
strides.resize(inputType.getRank(), one);
offsets.resize(inputType.getRank(), zero);
offsets[dim] = start;
strides[dim] = rewriter.create<arith::MulIOp>(loc, strides[dim], stepIndex);
return success();
}
} // namespace
// Ref:
// https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html
// padding_idx (int, optional)
// If specified, the entries at padding_idx do not contribute to the
// gradient; therefore, the embedding vector at padding_idx is not updated
// during training, i.e. it remains as a fixed “pad”.
// scale_grad_by_freq (boolean, optional)
// If given, this will scale gradients by the inverse of frequency of the
// words in the mini-batch. Default False.
// sparse (bool, optional)
// If True, gradient w.r.t. weight matrix will be a sparse tensor.
template <>
LogicalResult ConvertAtenOp<AtenEmbeddingOp>::matchAndRewrite(
AtenEmbeddingOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto weight = adaptor.getWeight();
auto weightTy = weight.getType().cast<RankedTensorType>();
if (!weightTy)
return op.emitError("only ranked tensor types are supported");
int64_t padding_idx;
if (!matchPattern(op.getPaddingIdx(), m_TorchConstantInt(&padding_idx)))
return rewriter.notifyMatchFailure(
op, "only constant padding_idx is currently supported");
bool scale_grad_by_freq;
if (!matchPattern(op.getScaleGradByFreq(),
m_TorchConstantBool(&scale_grad_by_freq)))
return rewriter.notifyMatchFailure(
op, "only constant scale_grad_by_freq is currently supported");
if (scale_grad_by_freq)
return rewriter.notifyMatchFailure(
op, "scale gradients is currently not supported");
bool sparse;
if (!matchPattern(op.getSparse(), m_TorchConstantBool(&sparse)))
return rewriter.notifyMatchFailure(
op, "only constant sparse is currently supported");
if (sparse)
return rewriter.notifyMatchFailure(
op, "sparse gradients is currently not supported");
Value output = gatherTensorAlongSingleAxis(
rewriter, op, weight, adaptor.getIndices(), 0, options.dimSizeIndexBits);
rewriter.replaceOpWithNewOp<stablehlo::ConvertOp>(
op, getTypeConverter()->convertType(op.getType()), output);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenIndexSelectOp>::matchAndRewrite(
AtenIndexSelectOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto self = adaptor.getSelf();
auto selfTy = self.getType().cast<RankedTensorType>();
if (!selfTy)
return op.emitError("only ranked tensor types are supported");
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "only constant dim is currently supported");
int64_t inputRank = selfTy.getRank();
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
Value output = gatherTensorAlongSingleAxis(
rewriter, op, self, adaptor.getIndex(), dim, options.dimSizeIndexBits);
rewriter.replaceOpWithNewOp<stablehlo::ConvertOp>(
op, getTypeConverter()->convertType(op.getType()), output);
return success();
}
// AtenGatherOp
template <>
LogicalResult ConvertAtenOp<AtenGatherOp>::matchAndRewrite(
AtenGatherOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
Value input = adaptor.getSelf();
Value index = adaptor.getIndex();
auto inputType = input.getType().cast<RankedTensorType>();
auto indexType = index.getType().cast<RankedTensorType>();
auto indexElemType = indexType.getElementType();
if (indexType.getRank() != inputType.getRank()) {
return op.emitError("`index` and `input` param should have the same rank");
}
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
return rewriter.notifyMatchFailure(
op, "only constant int `dim` param supported");
}
dim = toPositiveDim(dim, inputType.getRank());
if (!isValidDim(dim, inputType.getRank())) {
return rewriter.notifyMatchFailure(op, "invalid `dim` param detected");
}
bool sparseGrad = false;
if (!matchPattern(op.getSparseGrad(), m_TorchConstantBool(&sparseGrad))) {
return rewriter.notifyMatchFailure(
op, "only constant boolean `sparse_grad` param supported");
}
auto options = getOptions();
auto indexShapeInfo =
hlo::getDimSizesOfTensor(rewriter, op, index, options.dimSizeIndexBits);
if (failed(indexShapeInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to get dim sizes of `index` param");
}
auto intType = rewriter.getIntegerType(options.dimSizeIndexBits);
auto one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));
auto toConcatIndexShapeValueVec = *indexShapeInfo;
toConcatIndexShapeValueVec.push_back(one);
auto toConcatIndexShape =
rewriter.create<tensor::FromElementsOp>(loc, toConcatIndexShapeValueVec);
auto indexShape = indexType.getShape();
SmallVector<int64_t> toConcatIndexShapeVec(indexShape.begin(),
indexShape.end());
toConcatIndexShapeVec.push_back(1);
RankedTensorType toConcatIndexType =
RankedTensorType::get(toConcatIndexShapeVec, indexElemType);
SmallVector<Value> toConcat;
for (int64_t i = 0; i < inputType.getRank(); ++i) {
if (i == dim) {
toConcat.push_back(rewriter.create<stablehlo::DynamicReshapeOp>(
loc, toConcatIndexType, index, toConcatIndexShape));
} else {
toConcat.push_back(rewriter.create<stablehlo::DynamicIotaOp>(
loc, toConcatIndexType, toConcatIndexShape,
rewriter.getI64IntegerAttr(i)));
}
}
auto gatherIndicies = rewriter.create<stablehlo::ConcatenateOp>(
loc, toConcat, static_cast<uint64_t>(inputType.getRank()));
SmallVector<int64_t> sliceSizes(inputType.getRank(), 1);
int64_t indexVecDim = inputType.getRank();
SmallVector<int64_t> collapsedDims;
SmallVector<int64_t> startIndexMap;
for (int64_t i = 0; i < inputType.getRank(); ++i) {
collapsedDims.push_back(i);
startIndexMap.push_back(i);
}
auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get(
rewriter.getContext(),
/*offsetDims=*/{},
/*collapsedSliceDims=*/collapsedDims,
/*startIndexMap=*/startIndexMap,
/*indexVecDim=*/indexVecDim);
rewriter.replaceOpWithNewOp<stablehlo::GatherOp>(
op, input, gatherIndicies, dimsAttr,
rewriter.getI64TensorAttr(sliceSizes));
return success();
}
// AtenSliceScatterOp
template <>
LogicalResult ConvertAtenOp<AtenSliceScatterOp>::matchAndRewrite(
AtenSliceScatterOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
TypeConverter *typeConverter = getTypeConverter();
auto input = adaptor.getSelf();
RankedTensorType resultType =
typeConverter->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
SmallVector<Value> resultShape;
SmallVector<Value> offsets;
SmallVector<Value> strides;
if (failed(prepareArgumentsForSlicingOp<AtenSliceScatterOp,
AtenSliceScatterOpAdaptor>(
op, adaptor, rewriter, resultShape, offsets, strides))) {
return failure();
}
Value src = adaptor.getSrc();
auto srcType = src.getType().cast<RankedTensorType>();
int64_t srcRank = srcType.getRank();
SmallVector<int64_t> srcAbstractSizes(srcRank, kUnknownSize);
auto abstractSrcType = RankedTensorType::get(
makeShapeLLVMCompatible(srcAbstractSizes), srcType.getElementType());
Value abstractSrc =
rewriter.create<tensor::CastOp>(loc, abstractSrcType, src);
Value result = rewriter.create<tensor::InsertSliceOp>(
loc, abstractSrc, input, offsets, resultShape, strides);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
// AtenIndexTensorOp
// Convert AtenIndexTensorOp to StableHlo::GatherOp
// Step 1: broadcast indices to the same shape
// Step 2: reshape broadcasted indices to have extra last dimension and concat
// Step 3: Create StableHlo::GatherOp with input tensor and indices
//
// Example:
// Input: [[1, 2, 3],
// [4, 5, 6],
// [7, 8, 9]]
// Indices[0]: [[0, 0, 0],
// [2, 2, 0]]
// Indices[1]: [[2],
// [1]]
// Step 1:
// Indices[0]: [[0, 0, 0],
// [2, 2, 0]]
// Indices[1]: [[2, 2, 2],
// [1, 1, 1]]
// Step 2:
// Indices: [[[0, 2], [0, 2], [0, 2]],
// [[2, 1], [2, 1], [0, 1]]]
// Step 3:
// Output: [[3, 3, 3],
// [8, 8, 2]]
template <>
LogicalResult ConvertAtenOp<AtenIndexTensorOp>::matchAndRewrite(
AtenIndexTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
Value input = adaptor.getSelf();
auto inputTensorType = input.getType().dyn_cast<RankedTensorType>();
// Check input is a tensor type.
if (!inputTensorType)
return rewriter.notifyMatchFailure(
op, "Only tensor types input are currently supported");
Value indexList = op.getIndices();
SmallVector<Value> indicesTorchType;
if (!getListConstructElements(indexList, indicesTorchType))
return op.emitError(
"unimplemented: the tensor list is not from list construct");
auto indexTensors = getTypeConvertedValues(rewriter, loc, getTypeConverter(),
indicesTorchType);
// Step 1: broadcast indices tensors
int maxRank = -1;
SmallVector<int64_t> indicesShape;
SmallVector<int64_t> expandShape;
SmallVector<int64_t> concatShape;
// concat index tensor into to indices tensor for concat
for (size_t i = 0; i < indexTensors.size(); i++) {
auto indexTensor = indexTensors[i];
auto indexTorchTensor = indicesTorchType[i];
// TODO: add support for none index input
if (indexTorchTensor.getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Only list ranked tensor types index are supported");
auto indexTensorType = indexTensor.getType().cast<RankedTensorType>();
for (int64_t size : makeShapeTorchCompatible(indexTensorType.getShape())) {
if (size == kUnknownSize)
return rewriter.notifyMatchFailure(op, "Dynamic index support TBD");
}
maxRank = std::max(maxRank, (int)indexTensorType.getRank());
}
RankedTensorType resultType =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
SmallVector<int64_t> refinedResultShape =
makeShapeTorchCompatible(resultType.getShape());
for (int64_t size : refinedResultShape) {
if (size == kUnknownSize)
return rewriter.notifyMatchFailure(op, "Dynamic index support TBD");
}
for (int i = 0; i < maxRank; i++) {
indicesShape.push_back(refinedResultShape[i]);
expandShape.push_back(refinedResultShape[i]);
concatShape.push_back(refinedResultShape[i]);
}
if (indexTensors.size() > 1) {
expandShape.push_back(1);
concatShape.push_back(indexTensors.size());
}
SmallVector<Value> broadcastedIndices;
Type indexElemTy =
indexTensors[0].getType().cast<RankedTensorType>().getElementType();
RankedTensorType bcastIndexType =
RankedTensorType::get(indicesShape, indexElemTy);
for (auto indexTensor : indexTensors) {
Value bcastVal =
hlo::promoteAndBroadcast(rewriter, indexTensor, bcastIndexType);
if (indexTensors.size() > 1) {
RankedTensorType reshapeType =
RankedTensorType::get(expandShape, indexElemTy);
bcastVal =
rewriter.create<stablehlo::ReshapeOp>(loc, reshapeType, bcastVal);
}
broadcastedIndices.push_back(bcastVal);
}
// Step 2: concat index tensors
Value finalIndexTensor = broadcastedIndices[0];
if (broadcastedIndices.size() > 1) {
RankedTensorType concatTy = RankedTensorType::get(concatShape, indexElemTy);
finalIndexTensor = rewriter.create<stablehlo::ConcatenateOp>(
loc, concatTy, ValueRange(broadcastedIndices), concatShape.size() - 1);
}
// Step 3: create stablehlo::GatherOp
RankedTensorType finalIndexTy =
finalIndexTensor.getType().cast<RankedTensorType>();
int64_t indicesRank = finalIndexTy.getRank();
int64_t numIndicesDim = broadcastedIndices.size();
int64_t indexVecDim = numIndicesDim > 1 ? indicesRank - 1 : indicesRank;
SmallVector<int64_t> offsetDims;
SmallVector<int64_t> collapsedDims;
SmallVector<int64_t> startIndexMap;
for (int64_t i = 0; i < numIndicesDim; ++i) {
collapsedDims.push_back(i);
startIndexMap.push_back(i);
}
for (int64_t i = numIndicesDim; i < inputTensorType.getRank(); i++) {
if (numIndicesDim > 1) {
offsetDims.push_back(i + indicesRank - 1 - numIndicesDim);
} else {
offsetDims.push_back(i + indicesRank - numIndicesDim);
}
}
auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get(
rewriter.getContext(),
/*offsetDims=*/offsetDims,
/*collapsedSliceDims=*/collapsedDims,
/*startIndexMap=*/startIndexMap,
/*indexVecDim=*/indexVecDim);
SmallVector<int64_t> sliceSizes;
auto inputShape = makeShapeTorchCompatible(inputTensorType.getShape());
for (int64_t i = 0; i < inputTensorType.getRank(); ++i) {
if (i < numIndicesDim) {
sliceSizes.push_back(1);
} else {
sliceSizes.push_back(inputShape[i]);
}
}
rewriter.replaceOpWithNewOp<stablehlo::GatherOp>(
op, resultType, input, finalIndexTensor, dimsAttr,
rewriter.getI64TensorAttr(sliceSizes));
return success();
}
void mlir::torch::torch_to_stablehlo::
populateGatherScatterOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, const TorchToStablehloOptions &options) {
MLIRContext *context = patterns.getContext();
#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context, options)
INSERT_ATENOP_PATTERN(AtenEmbeddingOp);
INSERT_ATENOP_PATTERN(AtenIndexSelectOp);
INSERT_ATENOP_PATTERN(AtenGatherOp);
INSERT_ATENOP_PATTERN(AtenSliceScatterOp);
INSERT_ATENOP_PATTERN(AtenIndexTensorOp);
#undef INSERT_ATENOP_PATTERN
}