torch-mlir/python/npcomp/dialect/Numpy.py

81 lines
2.6 KiB
Python
Raw Normal View History

2020-05-02 01:38:52 +08:00
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import numpy as np
from npcomp.dialect import Basicpy
from _npcomp.mlir import ir
2020-05-02 01:38:52 +08:00
__all__ = [
"load_builtin_module",
"DialectHelper",
2020-05-02 01:38:52 +08:00
]
class DialectHelper(Basicpy.DialectHelper):
r"""Dialect helper.
>>> c = ir.MLIRContext()
>>> h = DialectHelper(c, ir.OpBuilder(c))
DenseElementsAttrs:
>>> c.dense_elements_attr(np.asarray([1, 2, 3, 4], dtype=np.int32))
dense<[1, 2, 3, 4]> : tensor<4xsi32>
>>> c.dense_elements_attr(np.asarray([[1, 2], [3, 4]], dtype=np.int32))
dense<[[1, 2], [3, 4]]> : tensor<2x2xsi32>
>>> c.dense_elements_attr(np.asarray([[1., 2.], [3., 4.]]))
dense<[[1.000000e+00, 2.000000e+00], [3.000000e+00, 4.000000e+00]]> : tensor<2x2xf64>
>>> c.dense_elements_attr(np.asarray([[1., 2.], [3., 4.]], dtype=np.float32))
dense<[[1.000000e+00, 2.000000e+00], [3.000000e+00, 4.000000e+00]]> : tensor<2x2xf32>
Types:
>>> c = ir.MLIRContext()
>>> t = DialectHelper(c, ir.OpBuilder(c))
>>> t.numpy_any_dtype
!basicpy.UnknownType
>>> t.tensor_type(t.numpy_any_dtype, [1, 2, 3])
tensor<1x2x3x!basicpy.UnknownType>
>>> t.tensor_type(t.numpy_any_dtype)
tensor<*x!basicpy.UnknownType>
>>> t.tensor_type(t.numpy_any_dtype, [-1, 2])
tensor<?x2x!basicpy.UnknownType>
>>> t.tensor_type(t.f32_type)
tensor<*xf32>
>>> t.function_type([t.i32_type], [t.f32_type])
(i32) -> f32
>>> t.numpy_unknown_tensor_type
tensor<*x!basicpy.UnknownType>
"""
@property
def numpy_any_dtype(self):
return self.basicpy_UnknownType
@property
def numpy_unknown_tensor_type(self):
return self.tensor_type(self.basicpy_UnknownType)
@property
def unknown_array_type(self):
return self.numpy_NdArrayType(self.basicpy_UnknownType)
def numpy_builtin_ufunc_call_op(self, *args, qualified_name, result_type):
"""Creates a numpy.builtin_ufunc_call op."""
c = self.context
attrs = c.dictionary_attr({"qualified_name": c.string_attr(qualified_name)})
return self.op("numpy.builtin_ufunc_call", [result_type], args, attrs)
def numpy_narrow_op(self, result_type, operand):
"""Creates a numpy.narrow op."""
return self.op("numpy.narrow", [result_type], [operand])
def numpy_get_slice_op(self, result_type, array, *slice_elements):
return self.op("numpy.get_slice", [result_type],
[array] + list(slice_elements))
2020-05-02 01:38:52 +08:00
if __name__ == "__main__":
import doctest
doctest.testmod()