mirror of https://github.com/llvm/torch-mlir
45 lines
1.1 KiB
Python
45 lines
1.1 KiB
Python
|
# RUN: %PYTHON %s | FileCheck %s --dump-input=fail
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from npcomp.compiler.backend import refjit
|
||
|
from npcomp.compiler.frontend import *
|
||
|
from npcomp.compiler import logging
|
||
|
from npcomp.compiler import test_config
|
||
|
from npcomp.compiler.target import *
|
||
|
|
||
|
# TODO: This should all exist in a high level API somewhere.
|
||
|
from _npcomp import mlir
|
||
|
|
||
|
logging.enable()
|
||
|
|
||
|
|
||
|
def compile_function(f):
|
||
|
fe = ImportFrontend(config=test_config.create_test_config(
|
||
|
target_factory=GenericTarget32))
|
||
|
fe.import_global_function(f)
|
||
|
compiler = refjit.CompilerBackend()
|
||
|
blob = compiler.compile(fe.ir_module)
|
||
|
loaded_m = compiler.load(blob)
|
||
|
return loaded_m[f.__name__]
|
||
|
|
||
|
|
||
|
global_data = (np.zeros((2, 3)) + [1.0, 2.0, 3.0] * np.reshape([1.0, 2.0],
|
||
|
(2, 1)))
|
||
|
|
||
|
a = np.asarray([1.0, 2.0], dtype=np.float32)
|
||
|
b = np.asarray([3.0, 4.0], dtype=np.float32)
|
||
|
|
||
|
|
||
|
@compile_function
|
||
|
def global_add():
|
||
|
return np.add(a, np.add(b, a))
|
||
|
|
||
|
|
||
|
# Make sure we aren't accidentally invoking the python function :)
|
||
|
assert global_add.__isnpcomp__
|
||
|
|
||
|
# CHECK: GLOBAL_ADD: [5. 8.]
|
||
|
result = global_add()
|
||
|
print("GLOBAL_ADD:", result)
|