torch-mlir/lib/Conversion/TorchToTensor/TorchToTensor.cpp

177 lines
6.4 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v3.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-1.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTensor/TorchToTensor.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
class ConvertAtenItemOp : public OpConversionPattern<AtenItemOp> {
public:
using OpConversionPattern<AtenItemOp>::OpConversionPattern;
using OpAdaptor = typename AtenItemOp::Adaptor;
LogicalResult
matchAndRewrite(AtenItemOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto operand = adaptor.getOperands()[0];
auto operandTy = cast<RankedTensorType>(operand.getType());
auto torchDTy = cast<ValueTensorType>(op.getOperand().getType()).getDtype();
if (operandTy.getNumElements() != 1)
return rewriter.notifyMatchFailure(op, "expected only one item");
auto zeroIdx = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), 0);
auto rank = operandTy.getRank();
llvm::SmallVector<Value> indices(rank, zeroIdx);
Value extract = rewriter.create<tensor::ExtractOp>(
op.getLoc(), operandTy.getElementType(), operand, indices);
auto extractTy = extract.getType();
if (isa<mlir::IntegerType>(extractTy) && !extractTy.isInteger(64)) {
if (torchDTy.isUnsignedInteger()) {
extract = rewriter.create<arith::ExtUIOp>(
op.getLoc(), rewriter.getIntegerType(64), extract);
} else {
extract = rewriter.create<arith::ExtSIOp>(
op.getLoc(), rewriter.getIntegerType(64), extract);
}
}
if (isa<mlir::FloatType>(extractTy) && !extractTy.isF64()) {
extract = rewriter.create<arith::ExtFOp>(op.getLoc(),
rewriter.getF64Type(), extract);
}
rewriter.replaceOp(op, extract);
return success();
}
};
class ConvertAtenShapeToTensorPatternOp
: public OpConversionPattern<Aten_ShapeAsTensorOp> {
public:
using OpConversionPattern<Aten_ShapeAsTensorOp>::OpConversionPattern;
using OpAdaptor = typename Aten_ShapeAsTensorOp::Adaptor;
LogicalResult
matchAndRewrite(Aten_ShapeAsTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto operand = adaptor.getOperands()[0];
auto operandTy = cast<RankedTensorType>(operand.getType());
auto resultTy =
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
int64_t rank = operandTy.getRank();
if (rank == 0) {
rewriter.replaceOpWithNewOp<tensor::EmptyOp>(op, resultTy.getShape(),
resultTy.getElementType());
return success();
}
SmallVector<Value> dims;
for (int i = 0; i < rank; ++i) {
Value dim = rewriter.createOrFold<tensor::DimOp>(loc, operand, i);
dim = rewriter.createOrFold<arith::IndexCastOp>(
loc, resultTy.getElementType(), dim);
dims.push_back(dim);
}
Value tensor =
rewriter.createOrFold<tensor::FromElementsOp>(op.getLoc(), dims);
rewriter.replaceOp(op, tensor);
return success();
}
};
class ConvertAtenTensorOpPattern : public OpConversionPattern<AtenTensorOp> {
public:
using OpConversionPattern<AtenTensorOp>::OpConversionPattern;
using OpAdaptor = typename AtenTensorOp::Adaptor;
LogicalResult
matchAndRewrite(AtenTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto list = op.getData().getDefiningOp<Torch::PrimListConstructOp>();
if (!list)
return failure();
auto typeConverter = getTypeConverter();
auto resultTy = cast<ShapedType>(typeConverter->convertType(op.getType()));
auto resultETy = resultTy.getElementType();
SmallVector<Value> values;
for (Value operand : list.getOperands()) {
Value value = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(operand.getType()),
operand);
if (isa<mlir::IntegerType>(resultETy) && value.getType() != resultETy)
value = rewriter.create<arith::TruncIOp>(loc, resultETy, value);
if (isa<mlir::FloatType>(resultETy) && value.getType() != resultETy)
value = rewriter.create<arith::TruncFOp>(loc, resultETy, value);
values.push_back(value);
}
rewriter.replaceOpWithNewOp<tensor::FromElementsOp>(op, resultTy, values);
return success();
}
};
class ConvertTorchToTensor
: public ConvertTorchToTensorBase<ConvertTorchToTensor> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<tensor::TensorDialect>();
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
ConversionTarget target(*context);
target.addLegalDialect<arith::ArithDialect>();
target.addLegalDialect<tensor::TensorDialect>();
target.addIllegalOp<Torch::AtenItemOp>();
target.addIllegalOp<Torch::AtenTensorOp>();
target.addIllegalOp<Torch::Aten_ShapeAsTensorOp>();
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
TorchConversion::setupBackendTypeConversion(target, typeConverter);
RewritePatternSet patterns(context);
patterns.add<ConvertAtenShapeToTensorPatternOp, ConvertAtenItemOp,
ConvertAtenTensorOpPattern>(typeConverter, context);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::createConvertTorchToTensorPass() {
return std::make_unique<ConvertTorchToTensor>();
}