torch-mlir/lib/Conversion/TorchToTosa/TorchToTosa.cpp

245 lines
12 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTosa/TorchToTosa.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
// These legalizations are for unary ops with only for FP datatypes.
// There is no supported quantized integer mode for these.
#define DEF_FULLCONV_FPONLY_UNARY_ATENOP(aten_op, tosa_op) \
class ConvertAten##aten_op##Op \
: public OpConversionPattern<Aten##aten_op##Op> { \
public: \
using OpConversionPattern::OpConversionPattern; \
LogicalResult \
matchAndRewrite(Aten##aten_op##Op op, ArrayRef<Value> operands, \
ConversionPatternRewriter &rewriter) const override { \
Aten##aten_op##Op::Adaptor adaptor(operands); \
Value self = adaptor.self(); \
auto selfTy = self.getType().cast<TensorType>(); \
if (selfTy) { \
if (selfTy.getElementType().isa<mlir::FloatType>()) { \
rewriter.replaceOpWithNewOp<tosa::tosa_op##Op>( \
op, getTypeConverter()->convertType(op.getType()), self); \
return success(); \
} else { \
return op.emitError("Only FP type legalization supported"); \
} \
} else { \
return op.emitError("Only Tensor types supported in TOSA"); \
} \
} \
};
DEF_FULLCONV_FPONLY_UNARY_ATENOP(Log, Log)
DEF_FULLCONV_FPONLY_UNARY_ATENOP(Exp, Exp)
#undef DEF_FULLCONV_FPONLY_UNARY_ATENOP
// These unary op legalizations are identical for FP or quantized types
#define DEF_FULLCONV_UNARY_ATENOP(aten_op, tosa_op) \
class ConvertAten##aten_op##Op \
: public OpConversionPattern<Aten##aten_op##Op> { \
public: \
using OpConversionPattern::OpConversionPattern; \
LogicalResult \
matchAndRewrite(Aten##aten_op##Op op, ArrayRef<Value> operands, \
ConversionPatternRewriter &rewriter) const override { \
Aten##aten_op##Op::Adaptor adaptor(operands); \
rewriter.replaceOpWithNewOp<tosa::tosa_op##Op>( \
op, getTypeConverter()->convertType(op.getType()), adaptor.self()); \
return success(); \
} \
};
DEF_FULLCONV_UNARY_ATENOP(Neg, Negate)
DEF_FULLCONV_UNARY_ATENOP(Floor, Floor)
DEF_FULLCONV_UNARY_ATENOP(BitwiseNot, BitwiseNot)
#undef DEF_FULLCONV_UNARY_ATENOP
// These binary op legalizations are identical for FP or quantized types
#define DEF_FULLCONV_ADDSUB_ATENOP(aten_op, tosa_op) \
class ConvertAten##aten_op##Op \
: public OpConversionPattern<Aten##aten_op##Op> { \
public: \
using OpConversionPattern::OpConversionPattern; \
LogicalResult matchAndRewrite(Aten##aten_op##Op op, \
ArrayRef<Value> operands, \
ConversionPatternRewriter &rewriter) const { \
Aten##aten_op##Op::Adaptor adaptor(operands); \
\
Value lhs = adaptor.self(); \
auto lhsTy = lhs.getType().cast<TensorType>(); \
Value rhs = adaptor.other(); \
auto rhsTy = rhs.getType().cast<TensorType>(); \
\
if (!lhsTy || !rhsTy) \
return op.emitError("Only Tensor types supported in TOSA"); \
\
auto lhsElemTy = lhsTy.getElementType(); \
auto rhsElemTy = rhsTy.getElementType(); \
\
if (lhsElemTy != rhsElemTy) \
return op.emitError("Add: input datatypes mismatched"); \
\
/* FIXME: Handle alpha. \
Needs extraction of floating point constant. */ \
\
if (lhsElemTy.isa<mlir::FloatType>()) { \
rewriter.replaceOpWithNewOp<tosa::tosa_op##Op>( \
op, getTypeConverter()->convertType(op.getType()), lhs, rhs); \
return success(); \
} else { \
return op.emitError("Only FP type legalization supported"); \
} \
} \
};
DEF_FULLCONV_ADDSUB_ATENOP(AddTensor, Add)
DEF_FULLCONV_ADDSUB_ATENOP(SubTensor, Sub)
#undef DEF_FULLCONV_ADDSUB_ATENOP
// These legalizations have both FP and quantized type supported modes.
// Their rewriters are expressed below
#define DECL_CONVERT_ATENOP(aten_op) \
class ConvertAten##aten_op##Op \
: public OpConversionPattern<Aten##aten_op##Op> { \
public: \
using OpConversionPattern::OpConversionPattern; \
LogicalResult \
matchAndRewrite(Aten##aten_op##Op op, ArrayRef<Value> operands, \
ConversionPatternRewriter &rewriter) const override; \
};
DECL_CONVERT_ATENOP(Tanh)
DECL_CONVERT_ATENOP(Sigmoid)
DECL_CONVERT_ATENOP(Relu)
#undef DECL_CONVERT_ATENOP
LogicalResult
ConvertAtenTanhOp::matchAndRewrite(AtenTanhOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
AtenTanhOp::Adaptor adaptor(operands);
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (selfTy && selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<tosa::TanhOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
} else {
// Sigmoid legalization in TOSA for quantized element-type uses
// specialized tosa.table construct.
return op.emitError("Only FP type legalization currently supported");
}
}
LogicalResult ConvertAtenSigmoidOp::matchAndRewrite(
AtenSigmoidOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
AtenSigmoidOp::Adaptor adaptor(operands);
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (selfTy && selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<tosa::SigmoidOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
} else {
// Sigmoid legalization in TOSA for quantized element-type uses
// specialized tosa.table construct.
return op.emitError("Only FP type legalization currently supported");
}
} // namespace
LogicalResult
ConvertAtenReluOp::matchAndRewrite(AtenReluOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
AtenReluOp::Adaptor adaptor(operands);
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
// Maps to tosa.clamp which has both int and fp limits.
int64_t clampMin = 0;
Value clampIn = self;
if (selfTy) {
// Rescale the clampIn for quantized types. TBD
if (!selfTy.getElementType().isa<mlir::FloatType>()) {
return op.emitError("Only FP type legalization currently supported");
}
rewriter.replaceOpWithNewOp<tosa::ClampOp>(
op, getTypeConverter()->convertType(op.getType()), clampIn,
rewriter.getI64IntegerAttr(clampMin),
rewriter.getI64IntegerAttr(std::numeric_limits<int32_t>::max()),
rewriter.getF32FloatAttr(0.0f),
rewriter.getF32FloatAttr(std::numeric_limits<float>::max()));
return success();
} else {
return op.emitError("Only Tensor types supported in TOSA");
}
}
} // namespace
// -----------------------------------------------------------------------------
// TorchToTosa Pass
// -----------------------------------------------------------------------------
namespace {
class ConvertTorchToTosa : public ConvertTorchToTosaBase<ConvertTorchToTosa> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<tosa::TosaDialect>();
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
ConversionTarget target(*context);
target.addLegalDialect<tosa::TosaDialect>();
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
TorchConversion::setupBackendTypeConversion(target, typeConverter);
RewritePatternSet patterns(context);
#define INSERT_NEW_PATTERN(aten_op) \
target.addIllegalOp<Aten##aten_op##Op>(); \
patterns.add<ConvertAten##aten_op##Op>(typeConverter, context);
INSERT_NEW_PATTERN(Log);
INSERT_NEW_PATTERN(Exp);
INSERT_NEW_PATTERN(Neg);
INSERT_NEW_PATTERN(Floor);
INSERT_NEW_PATTERN(BitwiseNot);
INSERT_NEW_PATTERN(AddTensor);
INSERT_NEW_PATTERN(SubTensor);
INSERT_NEW_PATTERN(Tanh);
INSERT_NEW_PATTERN(Sigmoid);
INSERT_NEW_PATTERN(Relu);
#undef INSERT_NEW_PATTERN
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::torch::createConvertTorchToTosaPass() {
return std::make_unique<ConvertTorchToTosa>();
}