torch-mlir/test/Dialect/Torch/canonicalize.mlir

1623 lines
87 KiB
MLIR
Raw Normal View History

[torch-mlir earthmoving (1/N)] C/C++ code movement. This creates the `external/torch-mlir` directory as an LLVM_EXTERNAL_PROJECTS-compatible project (analogous to `iree-dialects`) and completes movement/rename of all pure MLIR C/C++ compiler code into there. The next step will be to move all the Python code / code that links/includes PyTorch C++ code (which currently lives in `frontends/pytorch`) into a subdirectory here. I call this "earthmoving" because it is mostly mechanical changes and renames. As a quick summary (we can change this down the road easily) - C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch` - CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet` - preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_` - CMake `NPCOMPFoo -> TorchMLIRFoo` The goal of this is to create a standalone project creating a center of mass for entry into the MLIR ecosystem from PyTorch, suitable in scope for eventual inclusion/ownership in PyTorch. The idea is that `external/torch-mlir` will some day be pulled out into its own repository, and then npcomp will simply pull it in as a submodule. Layering-wise, what lives in `torch-mlir` lowers code from PyTorch (currently TorchScript, but TorchFX or pytorch/xla-style tracing are possible extensions) down to what we have been calling the "Torch backend contract" which is cleaned up IR (inlining, simplifcation, conversion to value tensors, ...) entirely in the `torch` dialect. This is the branching off point for further lowering, of which npcomp takes one opinion (outside `torch-mlir` of course!), namely the `TorchConversion` dialect/transforms which lower to IR suitable for IREE and other linalg-on-tensors based lower-level compilers. Summary of changes: - move `{include,lib,test}/Dialect/Torch` into `torch-mlir` - move relevant parts of CAPI into `torch-mlir`. - leave a few things related to the `torch-mlir` Python build commented out, which should be resolved in a subsequent change.
2021-09-10 03:24:10 +08:00
// RUN: torch-mlir-opt %s -canonicalize | FileCheck %s
// CHECK-LABEL: func.func @torch.aten.__range_length$fold() -> (!torch.int, !torch.int, !torch.int, !torch.int) {
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[INT3:.*]] = torch.constant.int 3
2022-06-23 11:23:46 +08:00
// CHECK: %[[INTM1:.*]] = torch.constant.int -1
// CHECK: %[[NEG_STEP:.*]] = torch.aten.__range_length %[[INT1]], %[[INT3]], %[[INTM1]] : !torch.int, !torch.int, !torch.int -> !torch.int
// CHECK: return %[[INT2]], %[[INT2]], %[[INT1]], %[[NEG_STEP]] : !torch.int, !torch.int, !torch.int, !torch.int
func.func @torch.aten.__range_length$fold() -> (!torch.int, !torch.int, !torch.int, !torch.int) {
%int3 = torch.constant.int 3
%int4 = torch.constant.int 4
%int2 = torch.constant.int 2
%int1 = torch.constant.int 1
%int0 = torch.constant.int 0
%int-1 = torch.constant.int -1
%0 = torch.aten.__range_length %int0, %int4, %int2 : !torch.int, !torch.int, !torch.int -> !torch.int
%1 = torch.aten.__range_length %int1, %int4, %int2 : !torch.int, !torch.int, !torch.int -> !torch.int
%2 = torch.aten.__range_length %int1, %int3, %int2 : !torch.int, !torch.int, !torch.int -> !torch.int
%3 = torch.aten.__range_length %int1, %int3, %int-1 : !torch.int, !torch.int, !torch.int -> !torch.int
return %0, %1, %2, %3 : !torch.int, !torch.int, !torch.int, !torch.int
}
// CHECK-LABEL: func.func @torch.aten.__is__
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.__is__(%arg0: !torch.list<int>, %arg1: !torch.none) -> !torch.bool {
%0 = torch.aten.__is__ %arg0, %arg1 : !torch.list<int>, !torch.none -> !torch.bool
return %0 : !torch.bool
}
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
// CHECK-LABEL: func.func @torch.aten.__is__$derefine_is_none
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.__is__$derefine_is_none(%arg0: !torch.list<int>, %arg1: !torch.none) -> !torch.bool {
%0 = torch.derefine %arg0 : !torch.list<int> to !torch.optional<list<int>>
%1 = torch.aten.__is__ %0, %arg1 : !torch.optional<list<int>>, !torch.none -> !torch.bool
return %1 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.__is__$none_is_none
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.__is__$none_is_none(%arg0: !torch.none, %arg1: !torch.none) -> !torch.bool {
%0 = torch.aten.__is__ %arg0, %arg1 : !torch.none, !torch.none -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.__is__$is_none$derefine(
// CHECK-SAME: %{{.*}}: !torch.vtensor) -> !torch.bool {
// CHECK: %[[RESULT:.*]] = torch.constant.bool false
// CHECK: return %[[RESULT]] : !torch.bool
func.func @torch.aten.__is__$is_none$derefine(%arg0: !torch.vtensor) -> !torch.bool {
%none = torch.constant.none
%0 = torch.derefine %arg0 : !torch.vtensor to !torch.optional<vtensor>
%1 = torch.aten.__is__ %0, %none : !torch.optional<vtensor>, !torch.none -> !torch.bool
return %1 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.__isnot__
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.__isnot__(%arg0: !torch.list<int>, %arg1: !torch.none) -> !torch.bool {
%0 = torch.aten.__isnot__ %arg0, %arg1 : !torch.list<int>, !torch.none -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.__isnot__$none_isnot_none
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.__isnot__$none_isnot_none(%arg0: !torch.none, %arg1: !torch.none) -> !torch.bool {
%0 = torch.aten.__isnot__ %arg0, %arg1 : !torch.none, !torch.none -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ne.bool() -> !torch.bool {
2021-10-21 23:50:01 +08:00
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.ne.bool() -> !torch.bool {
2021-10-21 23:50:01 +08:00
%a = torch.constant.bool true
%b = torch.constant.bool false
%0 = torch.aten.ne.bool %a, %b: !torch.bool, !torch.bool -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ne.bool$same_operand(
2021-10-21 23:50:01 +08:00
// CHECK-SAME: %[[ARG0:.*]]: !torch.bool) -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.ne.bool$same_operand(%arg0: !torch.bool) -> !torch.bool {
2021-10-21 23:50:01 +08:00
%0 = torch.aten.ne.bool %arg0, %arg0: !torch.bool, !torch.bool -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ne.bool$different_operand(
2021-10-21 23:50:01 +08:00
// CHECK-SAME: %[[ARG0:.*]]: !torch.bool) -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[RET:.*]] = torch.aten.ne.bool %[[ARG0]], %[[FALSE]] : !torch.bool, !torch.bool -> !torch.bool
// CHECK: return %[[RET]] : !torch.bool
func.func @torch.aten.ne.bool$different_operand(%a: !torch.bool) -> !torch.bool {
2021-10-21 23:50:01 +08:00
%b = torch.constant.bool false
%0 = torch.aten.ne.bool %a, %b: !torch.bool, !torch.bool -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.size$canonicalize_to_list(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3],f32>) -> !torch.list<int> {
// CHECK: %[[C2:.*]] = torch.constant.int 2
// CHECK: %[[C3:.*]] = torch.constant.int 3
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct %[[C2]], %[[C3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: return %[[LIST]] : !torch.list<int>
func.func @torch.aten.size$canonicalize_to_list(%arg0: !torch.vtensor<[2,3],f32>) -> !torch.list<int> {
%0 = torch.aten.size %arg0 : !torch.vtensor<[2,3],f32> -> !torch.list<int>
return %0 : !torch.list<int>
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
}
// One size unknown, so cannot canonicalize.
// TODO: For unknown sizes, insert the equivalent of a "dim" op.
// Then this will only require static rank.
// CHECK-LABEL: func.func @torch.aten.size$unknown_size(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,3],f32>) -> !torch.list<int> {
// CHECK: %[[SIZE:.*]] = torch.aten.size %[[ARG]] : !torch.vtensor<[?,3],f32> -> !torch.list<int>
func.func @torch.aten.size$unknown_size(%arg0: !torch.vtensor<[?,3],f32>) -> !torch.list<int> {
%0 = torch.aten.size %arg0 : !torch.vtensor<[?,3],f32> -> !torch.list<int>
return %0 : !torch.list<int>
}
// CHECK-LABEL: func.func @torch.aten.ne.int$same_operand(
// CHECK-SAME: %{{.*}}: !torch.int) -> !torch.bool {
// CHECK-NEXT: %[[FALSE:.*]] = torch.constant.bool false
// CHECK-NEXT: return %[[FALSE]] : !torch.bool
func.func @torch.aten.ne.int$same_operand(%arg0: !torch.int) -> !torch.bool {
%0 = torch.aten.ne.int %arg0, %arg0 : !torch.int, !torch.int -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ne.int$same_value() -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.ne.int$same_value() -> !torch.bool {
%int4 = torch.constant.int 4
%int4_0 = torch.constant.int 4
%2 = torch.aten.ne.int %int4, %int4_0 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ne.int$different_value() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.ne.int$different_value() -> !torch.bool {
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
%2 = torch.aten.ne.int %int4, %int5 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int$different_value() -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.eq.int$different_value() -> !torch.bool {
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
%2 = torch.aten.eq.int %int4, %int5 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int$same_operand(
// CHECK-SAME: %{{.*}}: !torch.int) -> !torch.bool {
// CHECK-NEXT: %[[F:.*]] = torch.constant.bool true
// CHECK-NEXT: return %[[F]] : !torch.bool
func.func @torch.aten.eq.int$same_operand(%arg0: !torch.int) -> !torch.bool {
%0 = torch.aten.eq.int %arg0, %arg0 : !torch.int, !torch.int -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int$same_value() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.eq.int$same_value() -> !torch.bool {
%int4 = torch.constant.int 4
%int4_0 = torch.constant.int 4
%2 = torch.aten.eq.int %int4, %int4_0 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int$of_size.int(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor) -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.eq.int$of_size.int(%arg0: !torch.tensor) -> !torch.bool {
%int-1 = torch.constant.int -1
%int0 = torch.constant.int 0
%0 = torch.aten.size.int %arg0, %int0 : !torch.tensor, !torch.int -> !torch.int
%1 = torch.aten.eq.int %0, %int-1 : !torch.int, !torch.int -> !torch.bool
return %1 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int$of_size.int_lhs_constant(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor) -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.eq.int$of_size.int_lhs_constant(%arg0: !torch.tensor) -> !torch.bool {
%int-1 = torch.constant.int -1
%int0 = torch.constant.int 0
%0 = torch.aten.size.int %arg0, %int0 : !torch.tensor, !torch.int -> !torch.int
%1 = torch.aten.eq.int %int-1, %0 : !torch.int, !torch.int -> !torch.bool
return %1 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int$no_change_minus1(
// CHECK-SAME: %[[ARG:.*]]: !torch.int) -> !torch.bool {
// CHECK: %[[CM1:.*]] = torch.constant.int -1
// CHECK: %[[RESULT:.*]] = torch.aten.eq.int %[[CM1]], %[[ARG]] : !torch.int, !torch.int -> !torch.bool
// CHECK: return %[[RESULT]] : !torch.bool
func.func @torch.aten.eq.int$no_change_minus1(%arg0: !torch.int) -> !torch.bool {
%int-1 = torch.constant.int -1
%1 = torch.aten.eq.int %int-1, %arg0 : !torch.int, !torch.int -> !torch.bool
return %1 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.lt.int$evaluate_to_true() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.lt.int$evaluate_to_true() -> !torch.bool {
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
%2 = torch.aten.lt.int %int4, %int5 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.lt.int$same_operand(
// CHECK-SAME: %{{.*}}: !torch.int) -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.lt.int$same_operand(%arg0: !torch.int) -> !torch.bool {
%2 = torch.aten.lt.int %arg0, %arg0: !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.lt.int$same_value() -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.lt.int$same_value() -> !torch.bool {
%int4 = torch.constant.int 4
%int4_0 = torch.constant.int 4
%2 = torch.aten.lt.int %int4, %int4_0 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.le.int$evaluate_to_true() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.le.int$evaluate_to_true() -> !torch.bool {
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
%2 = torch.aten.le.int %int4, %int5 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.le.int$same_operand(
// CHECK-SAME: %{{.*}}: !torch.int) -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.le.int$same_operand(%arg0: !torch.int) -> !torch.bool {
%2 = torch.aten.le.int %arg0, %arg0: !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.le.int$same_value() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.le.int$same_value() -> !torch.bool {
%int4 = torch.constant.int 4
%int4_0 = torch.constant.int 4
%2 = torch.aten.le.int %int4, %int4_0 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.gt.int$evaluate_to_true() -> !torch.bool {
// CHECK-NEXT: %[[T:.*]] = torch.constant.bool true
// CHECK-NEXT: return %[[T]] : !torch.bool
func.func @torch.aten.gt.int$evaluate_to_true() -> !torch.bool {
%int2 = torch.constant.int 2
%int4 = torch.constant.int 4
%0 = torch.aten.gt.int %int4, %int2 : !torch.int, !torch.int -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.gt.int$evaluate_to_false() -> !torch.bool {
// CHECK-NEXT: %[[T:.*]] = torch.constant.bool false
// CHECK-NEXT: return %[[T]] : !torch.bool
func.func @torch.aten.gt.int$evaluate_to_false() -> !torch.bool {
%int2 = torch.constant.int 2
%int4 = torch.constant.int 4
%0 = torch.aten.gt.int %int2, %int4 : !torch.int, !torch.int -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ge.int$evaluate_to_false() -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.ge.int$evaluate_to_false() -> !torch.bool {
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
%2 = torch.aten.ge.int %int4, %int5 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ge.int$same_operand(
// CHECK-SAME: %{{.*}}: !torch.int) -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.ge.int$same_operand(%arg0: !torch.int) -> !torch.bool {
%2 = torch.aten.ge.int %arg0, %arg0: !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ge.int$same_value() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.ge.int$same_value() -> !torch.bool {
%int4 = torch.constant.int 4
%int4_0 = torch.constant.int 4
%2 = torch.aten.ge.int %int4, %int4_0 : !torch.int, !torch.int -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.lt.float$evaluate_to_true() -> !torch.bool {
2022-02-11 05:25:25 +08:00
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.lt.float$evaluate_to_true() -> !torch.bool {
2022-02-11 05:25:25 +08:00
%float4 = torch.constant.float 4.0
%float5 = torch.constant.float 5.0
%2 = torch.aten.lt.float %float4, %float5 : !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.lt.float$same_operand(
2022-02-11 05:25:25 +08:00
// CHECK-SAME: %{{.*}}: !torch.float) -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.lt.float$same_operand(%arg0: !torch.float) -> !torch.bool {
2022-02-11 05:25:25 +08:00
%2 = torch.aten.lt.float %arg0, %arg0: !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.lt.float$same_value() -> !torch.bool {
2022-02-11 05:25:25 +08:00
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.lt.float$same_value() -> !torch.bool {
2022-02-11 05:25:25 +08:00
%float4 = torch.constant.float 4.0
%float4_0 = torch.constant.float 4.0
%2 = torch.aten.lt.float %float4, %float4_0 : !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.gt.float$evaluate_to_true() -> !torch.bool {
2022-02-11 05:25:25 +08:00
// CHECK-NEXT: %[[T:.*]] = torch.constant.bool true
// CHECK-NEXT: return %[[T]] : !torch.bool
func.func @torch.aten.gt.float$evaluate_to_true() -> !torch.bool {
2022-02-11 05:25:25 +08:00
%float2 = torch.constant.float 2.0
%float4 = torch.constant.float 4.0
%0 = torch.aten.gt.float %float4, %float2 : !torch.float, !torch.float -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.gt.float$evaluate_to_false() -> !torch.bool {
2022-02-11 05:25:25 +08:00
// CHECK-NEXT: %[[T:.*]] = torch.constant.bool false
// CHECK-NEXT: return %[[T]] : !torch.bool
func.func @torch.aten.gt.float$evaluate_to_false() -> !torch.bool {
2022-02-11 05:25:25 +08:00
%float2 = torch.constant.float 2.0
%float4 = torch.constant.float 4.0
%0 = torch.aten.gt.float %float2, %float4 : !torch.float, !torch.float -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @comparison_with_torch.aten.size.int(
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,2],unk>) -> (!torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool) {
// CHECK: %[[SIZE:.*]] = torch.aten.size.int %[[ARG0]], %int0 : !torch.vtensor<[?,2],unk>, !torch.int -> !torch.int
// CHECK: %[[GE_0_LHS:.*]] = torch.aten.ge.int %int0, %[[SIZE]] : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[LT_0_LHS:.*]] = torch.aten.lt.int %int0, %[[SIZE]] : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[EQ_0_LHS:.*]] = torch.aten.eq.int %int0, %[[SIZE]] : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[NE_0_LHS:.*]] = torch.aten.ne.int %int0, %[[SIZE]] : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[GT_0_RHS:.*]] = torch.aten.gt.int %[[SIZE]], %int0 : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[LE_0_RHS:.*]] = torch.aten.le.int %[[SIZE]], %int0 : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[EQ_0_RHS:.*]] = torch.aten.eq.int %[[SIZE]], %int0 : !torch.int, !torch.int -> !torch.bool
// CHECK: %[[NE_0_RHS:.*]] = torch.aten.ne.int %[[SIZE]], %int0 : !torch.int, !torch.int -> !torch.bool
// CHECK: return %true, %true, %false, %false, %[[GE_0_LHS]], %[[LT_0_LHS]], %[[EQ_0_LHS]], %[[NE_0_LHS]], %[[GT_0_RHS]], %[[LE_0_RHS]], %[[EQ_0_RHS]], %[[NE_0_RHS]] : !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool
func.func @comparison_with_torch.aten.size.int(%arg0: !torch.vtensor<[?,2],unk>) -> (!torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool) {
%int0 = torch.constant.int 0
%0 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,2],unk>, !torch.int -> !torch.int
// Cases we can fold.
%1 = torch.aten.le.int %int0, %0 : !torch.int, !torch.int -> !torch.bool
%2 = torch.aten.ge.int %0, %int0 : !torch.int, !torch.int -> !torch.bool
%3 = torch.aten.lt.int %0, %int0 : !torch.int, !torch.int -> !torch.bool
%4 = torch.aten.gt.int %int0, %0 : !torch.int, !torch.int -> !torch.bool
// Cases we cannot fold.
%5 = torch.aten.ge.int %int0, %0 : !torch.int, !torch.int -> !torch.bool
%6 = torch.aten.lt.int %int0, %0 : !torch.int, !torch.int -> !torch.bool
%7 = torch.aten.eq.int %int0, %0 : !torch.int, !torch.int -> !torch.bool
%8 = torch.aten.ne.int %int0, %0 : !torch.int, !torch.int -> !torch.bool
%9 = torch.aten.gt.int %0, %int0 : !torch.int, !torch.int -> !torch.bool
%10 = torch.aten.le.int %0, %int0 : !torch.int, !torch.int -> !torch.bool
%11 = torch.aten.eq.int %0, %int0 : !torch.int, !torch.int -> !torch.bool
%12 = torch.aten.ne.int %0, %int0 : !torch.int, !torch.int -> !torch.bool
return %1, %2, %3, %4, %5, %6, %7, %8, %9, %10, %11, %12 : !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool, !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.float$different_value() -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.eq.float$different_value() -> !torch.bool {
%float4 = torch.constant.float 4.0
%float5 = torch.constant.float 5.0
%2 = torch.aten.eq.float %float4, %float5 : !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.float$same_value() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.eq.float$same_value() -> !torch.bool {
%float4 = torch.constant.float 4.0
%float4_0 = torch.constant.float 4.0
%2 = torch.aten.eq.float %float4, %float4_0 : !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.str$different_value() -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.eq.str$different_value() -> !torch.bool {
%str4 = torch.constant.str "4"
%str5 = torch.constant.str "5"
%2 = torch.aten.eq.str %str4, %str5 : !torch.str, !torch.str -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.str$same_operand(
// CHECK-SAME: %{{.*}}: !torch.str) -> !torch.bool {
// CHECK-NEXT: %[[F:.*]] = torch.constant.bool true
// CHECK-NEXT: return %[[F]] : !torch.bool
func.func @torch.aten.eq.str$same_operand(%arg0: !torch.str) -> !torch.bool {
%0 = torch.aten.eq.str %arg0, %arg0 : !torch.str, !torch.str -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.str$same_value() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.eq.str$same_value() -> !torch.bool {
%str4 = torch.constant.str "4"
%str4_0 = torch.constant.str "4"
%2 = torch.aten.eq.str %str4, %str4_0 : !torch.str, !torch.str -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.len.str() -> !torch.int {
// CHECK: %[[INT7:.*]] = torch.constant.int 7
// CHECK: return %[[INT7]] : !torch.int
func.func @torch.aten.len.str() -> !torch.int {
%str = torch.constant.str "example"
%2 = torch.aten.len.str %str : !torch.str -> !torch.int
return %2 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.len.str$empty() -> !torch.int {
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: return %[[INT0]] : !torch.int
func.func @torch.aten.len.str$empty() -> !torch.int {
%str = torch.constant.str ""
%2 = torch.aten.len.str %str : !torch.str -> !torch.int
return %2 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.__not__
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.__not__() -> !torch.bool {
%false = torch.constant.bool false
%ret = torch.aten.__not__ %false : !torch.bool -> !torch.bool
return %ret: !torch.bool
}
// CHECK-LABEL: func.func @torch.prim.max.int$identity(
// CHECK-SAME: %[[ARG:.*]]: !torch.int) -> !torch.int {
// CHECK: return %[[ARG]] : !torch.int
func.func @torch.prim.max.int$identity(%arg0: !torch.int) -> !torch.int {
%0 = torch.prim.max.int %arg0, %arg0 : !torch.int, !torch.int -> !torch.int
return %0 : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.max.int$constant() -> !torch.int {
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: return %[[INT3]] : !torch.int
func.func @torch.prim.max.int$constant() -> !torch.int {
%int-1 = torch.constant.int -1
%int3 = torch.constant.int 3
%0 = torch.prim.max.int %int-1, %int3 : !torch.int, !torch.int -> !torch.int
return %0 : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.min.self_int$basic() -> !torch.int {
// CHECK: %[[M1:.*]] = torch.constant.int -1
// CHECK: return %[[M1]] : !torch.int
func.func @torch.prim.min.self_int$basic() -> !torch.int {
%int-1 = torch.constant.int -1
%int0 = torch.constant.int 0
%int1 = torch.constant.int 1
%0 = torch.prim.ListConstruct %int-1, %int0, %int1 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.prim.min.self_int %0 : !torch.list<int> -> !torch.int
return %1 : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.min.self_int$nofold$dynamic(
// CHECK: torch.prim.min.self_int
func.func @torch.prim.min.self_int$nofold$dynamic(%arg0: !torch.int) -> !torch.int {
%int-1 = torch.constant.int -1
%int0 = torch.constant.int 0
%0 = torch.prim.ListConstruct %int-1, %int0, %arg0: (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.prim.min.self_int %0 : !torch.list<int> -> !torch.int
return %1 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.len.t$of_size(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<*,f32>) -> !torch.int {
// CHECK: %[[DIM:.*]] = torch.aten.dim %[[ARG]] : !torch.vtensor<*,f32> -> !torch.int
// CHECK: return %[[DIM]] : !torch.int
func.func @torch.aten.len.t$of_size(%arg0: !torch.vtensor<*,f32>) -> !torch.int {
%0 = torch.aten.size %arg0 : !torch.vtensor<*,f32> -> !torch.list<int>
%1 = torch.aten.len.t %0 : !torch.list<int> -> !torch.int
return %1 : !torch.int
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
}
// CHECK-LABEL: func.func @torch.aten.dim$with_shape(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.int {
// CHECK: %[[DIM:.*]] = torch.constant.int 3
// CHECK: return %[[DIM]] : !torch.int
func.func @torch.aten.dim$with_shape(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.int {
%0 = torch.aten.dim %arg0 : !torch.vtensor<[?,?,?],f32> -> !torch.int
return %0 : !torch.int
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
}
// CHECK-LABEL: func.func @torch.aten.len.t$of_build_list(
// CHECK-SAME: %[[ARG:.*]]: !torch.int) -> !torch.int {
// CHECK: %[[LEN:.*]] = torch.constant.int 4
// CHECK: return %[[LEN]] : !torch.int
func.func @torch.aten.len.t$of_build_list(%arg0: !torch.int) -> !torch.int {
%0 = torch.prim.ListConstruct %arg0, %arg0, %arg0, %arg0 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.len.t %0 : !torch.list<int> -> !torch.int
return %1 : !torch.int
}
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
// CHECK-LABEL: func.func @torch.aten.len.t$no_fold_list_mutated()
func.func @torch.aten.len.t$no_fold_list_mutated() -> !torch.int {
%int4 = torch.constant.int 4
%0 = torch.prim.ListConstruct : () -> !torch.list<int>
%1 = torch.aten.append.t %0, %int4 : !torch.list<int>, !torch.int -> !torch.list<int>
// CHECK: torch.aten.len.t
%2 = torch.aten.len.t %0 : !torch.list<int> -> !torch.int
return %2 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.__getitem__.t(
// CHECK: %[[C5:.*]] = torch.constant.int 5
// CHECK: return %[[C5]] : !torch.int
func.func @torch.aten.__getitem__.t() -> !torch.int {
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
%int1 = torch.constant.int 1
%0 = torch.prim.ListConstruct %int4, %int5 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.__getitem__.t %0, %int1 : !torch.list<int>, !torch.int -> !torch.int
return %1 : !torch.int
}
// Not canonicalized because of passed in index
// CHECK-LABEL: func.func @torch.aten.__getitem__.t$no_change_test0(
// CHECK: %[[C5:.*]] = torch.constant.int 5
2022-06-23 11:23:46 +08:00
// CHECK: %[[C4:.*]] = torch.constant.int 4
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct %[[C4]], %[[C5]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[ITEM:.*]] = torch.aten.__getitem__.t %[[LIST]], %arg0 : !torch.list<int>, !torch.int -> !torch.int
// CHECK: return %[[ITEM]] : !torch.int
func.func @torch.aten.__getitem__.t$no_change_test0(%arg0: !torch.int) -> !torch.int {
%int5 = torch.constant.int 5
%int4 = torch.constant.int 4
%0 = torch.prim.ListConstruct %int4, %int5 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.__getitem__.t %0, %arg0 : !torch.list<int>, !torch.int -> !torch.int
return %1 : !torch.int
}
// Not canonicalized because of passed in list
// CHECK-LABEL: func.func @torch.aten.__getitem__.t$no_change_test1(
// CHECK: %[[C5:.*]] = torch.constant.int 5
// CHECK: %[[ITEM:.*]] = torch.aten.__getitem__.t %arg0, %[[C5]] : !torch.list<int>, !torch.int -> !torch.int
// CHECK: return %[[ITEM]] : !torch.int
func.func @torch.aten.__getitem__.t$no_change_test1(%arg0: !torch.list<int>) -> !torch.int {
%int5 = torch.constant.int 5
%0 = torch.aten.__getitem__.t %arg0, %int5 : !torch.list<int>, !torch.int -> !torch.int
return %0 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.__getitem__.t$getitem_of_size(
// CHECK-SAME: %[[TENSOR:.*]]: !torch.tensor,
// CHECK-SAME: %[[INDEX:.*]]: !torch.int) -> !torch.int {
// CHECK: %[[RESULT:.*]] = torch.aten.size.int %[[TENSOR]], %[[INDEX]] : !torch.tensor, !torch.int -> !torch.int
// CHECK: return %[[RESULT]] : !torch.int
func.func @torch.aten.__getitem__.t$getitem_of_size(%arg0: !torch.tensor, %arg1: !torch.int) -> !torch.int {
%0 = torch.aten.size %arg0 : !torch.tensor -> !torch.list<int>
%1 = torch.aten.__getitem__.t %0, %arg1 : !torch.list<int>, !torch.int -> !torch.int
return %1 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.__getitem__.t$negative_index() -> !torch.int {
// CHECK: %[[INT8:.*]] = torch.constant.int 8
// CHECK: return %[[INT8]] : !torch.int
func.func @torch.aten.__getitem__.t$negative_index() -> !torch.int {
%int7 = torch.constant.int 7
%int8 = torch.constant.int 8
%int-1 = torch.constant.int -1
%0 = torch.prim.ListConstruct %int7, %int8 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.__getitem__.t %0, %int-1 : !torch.list<int>, !torch.int -> !torch.int
return %1 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.__getitem__.t$invalid_index() -> !torch.int {
func.func @torch.aten.__getitem__.t$invalid_index() -> !torch.int {
%int7 = torch.constant.int 7
%int8 = torch.constant.int 8
%int-1 = torch.constant.int -100
%0 = torch.prim.ListConstruct %int7, %int8 : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: torch.aten.__getitem__.t
%1 = torch.aten.__getitem__.t %0, %int-1 : !torch.list<int>, !torch.int -> !torch.int
return %1 : !torch.int
}
// Not canonicalized because of mutated lhs list
// CHECK-LABEL: func.func @torch.aten.add.t$no_canonicalize_lhs_mutated()
func.func @torch.aten.add.t$no_canonicalize_lhs_mutated() -> !torch.list<int> {
%int4 = torch.constant.int 4
%0 = torch.prim.ListConstruct : () -> !torch.list<int>
%1 = torch.prim.ListConstruct : () -> !torch.list<int>
%2 = torch.aten.append.t %0, %int4 : !torch.list<int>, !torch.int -> !torch.list<int>
// CHECK: torch.aten.add.t
%3 = torch.aten.add.t %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.list<int>
return %3 : !torch.list<int>
}
// Not canonicalized because of mutated rhs list
// CHECK-LABEL: func.func @torch.aten.add.t$no_canonicalize_rhs_mutated()
func.func @torch.aten.add.t$no_canonicalize_rhs_mutated() -> !torch.list<int> {
%int4 = torch.constant.int 4
%0 = torch.prim.ListConstruct : () -> !torch.list<int>
%1 = torch.prim.ListConstruct : () -> !torch.list<int>
%2 = torch.aten.append.t %1, %int4 : !torch.list<int>, !torch.int -> !torch.list<int>
// CHECK: torch.aten.add.t
%3 = torch.aten.add.t %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.list<int>
return %3 : !torch.list<int>
}
// CHECK-LABEL: func.func @torch.aten.add.t$concat(
// CHECK-SAME: %[[ARG0:.*]]: !torch.int,
// CHECK-SAME: %[[ARG1:.*]]: !torch.int) -> !torch.list<int> {
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct %[[ARG0]], %[[ARG1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: return %[[LIST]] : !torch.list<int>
func.func @torch.aten.add.t$concat(%arg0: !torch.int, %arg1: !torch.int) -> !torch.list<int> {
%0 = torch.prim.ListConstruct %arg0 : (!torch.int) -> !torch.list<int>
%1 = torch.prim.ListConstruct %arg1 : (!torch.int) -> !torch.list<int>
%2 = torch.aten.add.t %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.list<int>
return %2 : !torch.list<int>
}
// CHECK-LABEL: func.func @torch.aten.add.t$concat_empty(
// CHECK-SAME: %[[ARG0:.*]]: !torch.int) -> !torch.list<int> {
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct %[[ARG0]] : (!torch.int) -> !torch.list<int>
// CHECK: return %[[LIST]] : !torch.list<int>
func.func @torch.aten.add.t$concat_empty(%arg0: !torch.int) -> !torch.list<int> {
%0 = torch.prim.ListConstruct %arg0 : (!torch.int) -> !torch.list<int>
%1 = torch.prim.ListConstruct : () -> !torch.list<int>
%2 = torch.aten.add.t %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.list<int>
return %2 : !torch.list<int>
}
// CHECK-LABEL: func.func @torch.aten.eq.int_list$fold$literals_of_different_sizes
// CHECK: %[[RET:.*]] = torch.constant.bool false
// CHECK: return %[[RET]] : !torch.bool
func.func @torch.aten.eq.int_list$fold$literals_of_different_sizes(%arg0: !torch.int) -> !torch.bool {
%0 = torch.prim.ListConstruct : () -> !torch.list<int>
%1 = torch.prim.ListConstruct %arg0 : (!torch.int) -> !torch.list<int>
%2 = torch.aten.eq.int_list %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int_list$fold$same_literal
// CHECK: %[[RET:.*]] = torch.constant.bool true
// CHECK: return %[[RET]] : !torch.bool
func.func @torch.aten.eq.int_list$fold$same_literal(%arg0: !torch.int) -> !torch.bool {
%0 = torch.prim.ListConstruct %arg0 : (!torch.int) -> !torch.list<int>
%1 = torch.prim.ListConstruct %arg0 : (!torch.int) -> !torch.list<int>
%2 = torch.aten.eq.int_list %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.eq.int_list$no_fold$different_literals(
func.func @torch.aten.eq.int_list$no_fold$different_literals(%arg0: !torch.int, %arg1: !torch.int) -> !torch.bool {
%0 = torch.prim.ListConstruct %arg0 : (!torch.int) -> !torch.list<int>
%1 = torch.prim.ListConstruct %arg1 : (!torch.int) -> !torch.list<int>
// CHECK: torch.aten.eq.int_list
%2 = torch.aten.eq.int_list %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.Float.Scalar$constant_fold_int_to_float() -> !torch.float {
// CHECK: %[[VAL_0:.*]] = torch.constant.float 3.000000e+00
// CHECK: return %[[VAL_0]] : !torch.float
func.func @torch.aten.Float.Scalar$constant_fold_int_to_float() -> !torch.float {
%0 = torch.constant.int 3
%1 = torch.aten.Float.Scalar %0 : !torch.int -> !torch.float
return %1 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.Float.Scalar$identity(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.float) -> !torch.float {
// CHECK: return %[[VAL_0]] : !torch.float
func.func @torch.aten.Float.Scalar$identity(%arg0: !torch.float) -> !torch.float {
%0 = torch.aten.Float.Scalar %arg0 : !torch.float -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.constant.none$constantlike() -> (!torch.none, !torch.none) {
// CHECK: %[[C:.*]] = torch.constant.none
// CHECK: return %[[C]], %[[C]] : !torch.none, !torch.none
func.func @torch.constant.none$constantlike() -> (!torch.none, !torch.none) {
%0 = torch.constant.none
%1 = torch.constant.none
return %0, %1 : !torch.none, !torch.none
}
// CHECK-LABEL: func.func @torch.constant.str$constantlike() -> (!torch.str, !torch.str, !torch.str) {
// CHECK: %[[S:.*]] = torch.constant.str "s"
2022-06-23 11:23:46 +08:00
// CHECK: %[[T:.*]] = torch.constant.str "t"
// CHECK: return %[[S]], %[[S]], %[[T]] : !torch.str, !torch.str, !torch.str
func.func @torch.constant.str$constantlike() -> (!torch.str, !torch.str, !torch.str) {
%0 = torch.constant.str "s"
%1 = torch.constant.str "s"
%2 = torch.constant.str "t"
return %0, %1, %2 : !torch.str, !torch.str, !torch.str
}
// CHECK-LABEL: func.func @torch.constant.bool$constantlike() -> (!torch.bool, !torch.bool, !torch.bool) {
// CHECK: %[[T:.*]] = torch.constant.bool true
2022-06-23 11:23:46 +08:00
// CHECK: %[[F:.*]] = torch.constant.bool false
// CHECK: return %[[T]], %[[T]], %[[F]] : !torch.bool, !torch.bool, !torch.bool
func.func @torch.constant.bool$constantlike() -> (!torch.bool, !torch.bool, !torch.bool) {
%0 = torch.constant.bool true
%1 = torch.constant.bool true
%2 = torch.constant.bool false
return %0, %1, %2 : !torch.bool, !torch.bool, !torch.bool
}
// CHECK-LABEL: func.func @torch.prim.If$erase_dead_branch(
// CHECK-SAME: %[[ARG:.*]]: !torch.int) -> !torch.int {
// CHECK-NEXT: %[[RET:.*]] = torch.aten.add.int %[[ARG]], %[[ARG]] : !torch.int, !torch.int -> !torch.int
// CHECK-NEXT: return %[[RET]] : !torch.int
func.func @torch.prim.If$erase_dead_branch(%arg0: !torch.int) -> !torch.int {
%true = torch.constant.bool true
%0 = torch.prim.If %true -> (!torch.int) {
%1 = torch.aten.add.int %arg0, %arg0 : !torch.int, !torch.int -> !torch.int
torch.prim.If.yield %1 : !torch.int
} else {
%1 = torch.aten.mul.int %arg0, %arg0 : !torch.int, !torch.int -> !torch.int
torch.prim.If.yield %1 : !torch.int
}
return %0 : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.If$no_fold$side_effect(
// CHECK-SAME: %[[ARG0:.*]]: !torch.bool) {
// CHECK: %[[STR:.*]] = torch.constant.str "str"
// CHECK: torch.prim.If %[[ARG0]] -> () {
// CHECK: torch.prim.RaiseException %[[STR]], %[[STR]] : !torch.str, !torch.str
// CHECK: torch.prim.If.yield
// CHECK: } else {
// CHECK: torch.prim.If.yield
// CHECK: }
// CHECK: return
func.func @torch.prim.If$no_fold$side_effect(%arg0: !torch.bool) {
%str = torch.constant.str "str"
torch.prim.If %arg0 -> () {
torch.prim.RaiseException %str, %str : !torch.str, !torch.str
torch.prim.If.yield
} else {
torch.prim.If.yield
}
return
}
// CHECK-LABEL: func.func @torch.prim.If$fold_same_result(
// CHECK-SAME: %[[PRED:.*]]: !torch.bool,
// CHECK-SAME: %[[ARG1:.*]]: !torch.int) -> (!torch.int, !torch.int) {
// CHECK-NEXT: return %[[ARG1]], %[[ARG1]] : !torch.int, !torch.int
func.func @torch.prim.If$fold_same_result(%arg0: !torch.bool, %arg1: !torch.int) -> (!torch.int, !torch.int) {
%0, %1 = torch.prim.If %arg0 -> (!torch.int, !torch.int) {
torch.prim.If.yield %arg1, %arg1 : !torch.int, !torch.int
} else {
torch.prim.If.yield %arg1, %arg1 : !torch.int, !torch.int
}
return %0, %1: !torch.int, !torch.int
}
// CHECK-LABEL: func.func @torch.prim.If$fold_same_result$subset_of_results(
// CHECK-SAME: %[[PRED:.*]]: !torch.bool,
// CHECK-SAME: %[[ARG1:.*]]: !torch.int,
// CHECK-SAME: %[[ARG2:.*]]: !torch.int) -> (!torch.int, !torch.int) {
// CHECK: %[[IF_RESULT:.*]] = torch.prim.If %[[PRED]] -> (!torch.int) {
// CHECK: torch.prim.If.yield %[[ARG1]] : !torch.int
// CHECK: } else {
// CHECK: torch.prim.If.yield %[[ARG2]] : !torch.int
// CHECK: }
// CHECK: return %[[ARG1]], %[[IF_RESULT:.*]] : !torch.int, !torch.int
func.func @torch.prim.If$fold_same_result$subset_of_results(%arg0: !torch.bool, %arg1: !torch.int, %arg2: !torch.int) -> (!torch.int, !torch.int) {
%0, %1 = torch.prim.If %arg0 -> (!torch.int, !torch.int) {
torch.prim.If.yield %arg1, %arg1: !torch.int, !torch.int
} else {
torch.prim.If.yield %arg1, %arg2: !torch.int, !torch.int
}
return %0, %1: !torch.int, !torch.int
}
// CHECK-LABEL: func.func @torch.prim.TupleUnpack(
// CHECK-SAME: %[[ARG0:.*]]: !torch.tensor,
// CHECK-SAME: %[[ARG1:.*]]: !torch.tensor) -> !torch.tensor {
// CHECK: return %[[ARG0]] : !torch.tensor
func.func @torch.prim.TupleUnpack(%arg0: !torch.tensor, %arg1: !torch.tensor) -> !torch.tensor{
%123 = torch.prim.TupleConstruct %arg0, %arg1: !torch.tensor, !torch.tensor -> !torch.tuple<tensor, tensor>
%124:2 = torch.prim.TupleUnpack %123 : !torch.tuple<tensor, tensor> -> !torch.tensor, !torch.tensor
return %124#0 : !torch.tensor
}
// CHECK-LABEL: func.func @torch.aten.__contains__.str(
// CHECK-SAME: %[[K0:.*]]: !torch.str, %[[V0:.*]]: !torch.tensor,
// CHECK-SAME: %[[K1:.*]]: !torch.str,
// CHECK-SAME: %[[V1:.*]]: !torch.tensor) -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: %[[DICT:.*]] = torch.prim.DictConstruct
// CHECK-SAME: keys(%[[K0]], %[[K1]] : !torch.str, !torch.str)
// CHECK-SAME: values(%[[V0]], %[[V1]] : !torch.tensor, !torch.tensor)
// CHECK-SAME: -> !torch.dict<str, tensor>
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.__contains__.str(%k0 : !torch.str, %v0: !torch.tensor, %k1: !torch.str, %v1: !torch.tensor) -> !torch.bool{
%dict = torch.prim.DictConstruct keys(%k0, %k1: !torch.str, !torch.str) values(%v0, %v1: !torch.tensor, !torch.tensor) -> !torch.dict<str, tensor>
%pred = torch.aten.__contains__.str %dict, %k0 : !torch.dict<str, tensor>, !torch.str -> !torch.bool
return %pred : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.__contains__.str$with_dict_modified(
// CHECK-SAME: %[[K0:.*]]: !torch.str, %[[V0:.*]]: !torch.tensor,
// CHECK-SAME: %[[K1:.*]]: !torch.str, %[[V1:.*]]: !torch.tensor) -> !torch.bool {
// CHECK: %[[DICT:.*]] = torch.prim.DictConstruct
// CHECK-SAME: keys(%[[K0]], %[[K1]] : !torch.str, !torch.str)
// CHECK-SAME: values(%[[V0]], %[[V1]] : !torch.tensor, !torch.tensor)
// CHECK-SAME: -> !torch.dict<str, tensor>
// CHECK: torch.aten._set_item.str %[[DICT]], %[[K0]], %[[V1]] :
// CHECK-SAME: !torch.dict<str, tensor>, !torch.str, !torch.tensor
// CHECK: %[[RET:.*]] = torch.aten.__contains__.str %[[DICT]], %[[K0]] :
// CHECK-SAME: !torch.dict<str, tensor>, !torch.str -> !torch.bool
// CHECK: return %[[RET]] : !torch.bool
func.func @torch.aten.__contains__.str$with_dict_modified(%k0 : !torch.str, %v0: !torch.tensor, %k1: !torch.str, %v1: !torch.tensor) -> !torch.bool{
%dict = torch.prim.DictConstruct keys(%k0, %k1: !torch.str, !torch.str) values(%v0, %v1: !torch.tensor, !torch.tensor) -> !torch.dict<str, tensor>
torch.aten._set_item.str %dict, %k0, %v1 : !torch.dict<str, tensor>, !torch.str, !torch.tensor
%pred = torch.aten.__contains__.str %dict, %k0 : !torch.dict<str, tensor>, !torch.str -> !torch.bool
return %pred : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.__getitem__.Dict_str(
// CHECK-SAME: %[[K0:.*]]: !torch.str, %[[V0:.*]]: !torch.tensor,
// CHECK-SAME: %[[K1:.*]]: !torch.str, %[[V1:.*]]: !torch.tensor) -> !torch.tensor {
// CHECK: %[[DICT:.*]] = torch.prim.DictConstruct
// CHECK-SAME: keys(%[[K0]], %[[K1]] : !torch.str, !torch.str)
// CHECK-SAME: values(%[[V0]], %[[V1]] : !torch.tensor, !torch.tensor)
// CHECK-SAME: -> !torch.dict<str, tensor>
// CHECK: return %[[V0]] : !torch.tensor
func.func @torch.aten.__getitem__.Dict_str(%k0 : !torch.str, %v0: !torch.tensor, %k1: !torch.str, %v1: !torch.tensor) -> !torch.tensor {
%dict = torch.prim.DictConstruct keys(%k0, %k1: !torch.str, !torch.str) values(%v0, %v1: !torch.tensor, !torch.tensor) -> !torch.dict<str, tensor>
%v = torch.aten.__getitem__.Dict_str %dict, %k0 : !torch.dict<str, tensor>, !torch.str -> !torch.tensor
return %v : !torch.tensor
}
// CHECK-LABEL: func.func @torch.aten.add.int() -> !torch.int {
// CHECK: %[[CST9:.*]] = torch.constant.int 9
// CHECK: return %[[CST9]] : !torch.int
func.func @torch.aten.add.int() -> !torch.int {
%cst4 = torch.constant.int 4
%cst5 = torch.constant.int 5
%ret = torch.aten.add.int %cst4, %cst5: !torch.int, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.sub.int() -> !torch.int {
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: return %[[CST1]] : !torch.int
func.func @torch.aten.sub.int() -> !torch.int {
%cst6 = torch.constant.int 6
%cst5 = torch.constant.int 5
%ret = torch.aten.sub.int %cst6, %cst5: !torch.int, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.mul.int() -> !torch.int {
// CHECK: %[[CST30:.*]] = torch.constant.int 30
// CHECK: return %[[CST30]] : !torch.int
func.func @torch.aten.mul.int() -> !torch.int {
%cst6 = torch.constant.int 6
%cst5 = torch.constant.int 5
%ret = torch.aten.mul.int %cst6, %cst5: !torch.int, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.mul.int$with_zero() -> !torch.int {
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: return %[[CST0]] : !torch.int
func.func @torch.aten.mul.int$with_zero() -> !torch.int {
%cst6 = torch.constant.int 6
%cst0 = torch.constant.int 0
%ret = torch.aten.mul.int %cst6, %cst0: !torch.int, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.floordiv.int() -> !torch.int {
// CHECK: %[[CST3:.*]] = torch.constant.int 3
// CHECK: return %[[CST3]] : !torch.int
func.func @torch.aten.floordiv.int() -> !torch.int {
%cst18 = torch.constant.int 18
%cst5 = torch.constant.int 5
%ret = torch.aten.floordiv.int %cst18, %cst5: !torch.int, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.remainder.int() -> !torch.int {
// CHECK: %[[CST3:.*]] = torch.constant.int 3
// CHECK: return %[[CST3]] : !torch.int
func.func @torch.aten.remainder.int() -> !torch.int {
%cst18 = torch.constant.int 18
%cst5 = torch.constant.int 5
%ret = torch.aten.remainder.int %cst18, %cst5: !torch.int, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.dtype$bfloat16(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<*,bf16>) -> !torch.int {
// CHECK: %[[CST:.*]] = torch.constant.int 15
// CHECK: return %[[CST]] : !torch.int
func.func @torch.prim.dtype$bfloat16(%t : !torch.tensor<*,bf16>) -> !torch.int {
%ret = torch.prim.dtype %t: !torch.tensor<*,bf16> -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.dtype$float(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<*,f32>) -> !torch.int {
// CHECK: %[[CST:.*]] = torch.constant.int 6
// CHECK: return %[[CST]] : !torch.int
func.func @torch.prim.dtype$float(%t : !torch.tensor<*,f32>) -> !torch.int {
%ret = torch.prim.dtype %t: !torch.tensor<*,f32> -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.dtype$bool(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<*,i1>) -> !torch.int {
// CHECK: %[[CST:.*]] = torch.constant.int 11
// CHECK: return %[[CST]] : !torch.int
func.func @torch.prim.dtype$bool(%t : !torch.tensor<*,i1>) -> !torch.int {
%ret = torch.prim.dtype %t: !torch.tensor<*,i1> -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.dtype$int64(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<*,si64>) -> !torch.int {
// CHECK: %[[CST:.*]] = torch.constant.int 4
// CHECK: return %[[CST]] : !torch.int
func.func @torch.prim.dtype$int64(%t : !torch.tensor<*,si64>) -> !torch.int {
%ret = torch.prim.dtype %t: !torch.tensor<*,si64> -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.size.int$neg_dim(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[2,3],f32>) -> !torch.int {
// CHECK: %[[RET:.*]] = torch.constant.int 2
// CHECK: return %[[RET]] : !torch.int
func.func @torch.aten.size.int$neg_dim(%t: !torch.tensor<[2,3],f32>) -> !torch.int {
%int-2 = torch.constant.int -2
%ret = torch.aten.size.int %t, %int-2 : !torch.tensor<[2,3],f32>, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.size.int$pos_dim(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[2,3],f32>) -> !torch.int {
// CHECK: %[[RET:.*]] = torch.constant.int 3
// CHECK: return %[[RET]] : !torch.int
func.func @torch.aten.size.int$pos_dim(%t: !torch.tensor<[2,3],f32>) -> !torch.int {
%int1 = torch.constant.int 1
%ret = torch.aten.size.int %t, %int1 : !torch.tensor<[2,3],f32>, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.size.int$invalid_dim(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[2,3],f32>) -> !torch.int {
// CHECK: %[[CST3:.*]] = torch.constant.int 3
// CHECK: %[[RET:.*]] = torch.aten.size.int %[[T]], %[[CST3]] : !torch.tensor<[2,3],f32>, !torch.int -> !torch.int
// CHECK: return %[[RET]] : !torch.int
func.func @torch.aten.size.int$invalid_dim(%t: !torch.tensor<[2,3],f32>) -> !torch.int {
%int3 = torch.constant.int 3
%ret = torch.aten.size.int %t, %int3 : !torch.tensor<[2,3],f32>, !torch.int -> !torch.int
return %ret : !torch.int
}
// CHECK-LABEL: func.func @torch.prim.unchecked_cast$derefine_identity(
// CHECK-SAME: %[[ARG:.*]]: !torch.int) -> !torch.int {
// CHECK: return %[[ARG]] : !torch.int
func.func @torch.prim.unchecked_cast$derefine_identity(%arg0: !torch.int) -> !torch.int {
%0 = torch.derefine %arg0 : !torch.int to !torch.optional<int>
%1 = torch.prim.unchecked_cast %0 : !torch.optional<int> -> !torch.int
return %1 : !torch.int
}
// CHECK-LABEL: func.func @torch.derefine$of_unchecked_cast(
// CHECK-SAME: %[[ARG:.*]]: !torch.optional<int>) -> !torch.optional<int> {
// CHECK: return %[[ARG]] : !torch.optional<int>
func.func @torch.derefine$of_unchecked_cast(%arg0: !torch.optional<int>) -> !torch.optional<int> {
%0 = torch.prim.unchecked_cast %arg0 : !torch.optional<int> -> !torch.int
%1 = torch.derefine %0 : !torch.int to !torch.optional<int>
return %1 : !torch.optional<int>
}
// CHECK-LABEL: func.func @torch.derefine$use_allows_type_refinement(
// CHECK-SAME: %{{.*}}: !torch.int) -> (!torch.vtensor, !torch.optional<int>) {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[DEREFINED:.*]] = torch.derefine %[[NONE]] : !torch.none to !torch.optional<int>
// For the use that allows type refinement, we replace it with the refined value.
// CHECK: %[[ARANGE:.*]] = torch.aten.arange.start %{{.*}}, %{{.*}}, %[[NONE]], %{{.*}}, %{{.*}}, %{{.*}} : !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor
// For the use that does not allow type refinement, don't replace.
// CHECK: return %[[ARANGE]], %[[DEREFINED]] : !torch.vtensor, !torch.optional<int>
func.func @torch.derefine$use_allows_type_refinement(%arg0: !torch.int) -> (!torch.vtensor, !torch.optional<int>) {
%none = torch.constant.none
%optional = torch.derefine %none : !torch.none to !torch.optional<int>
%ret = torch.aten.arange.start %arg0, %arg0, %optional, %none, %none, %none: !torch.int, !torch.int, !torch.optional<int>, !torch.none, !torch.none, !torch.none -> !torch.vtensor
return %ret, %optional : !torch.vtensor, !torch.optional<int>
}
// CHECK-LABEL: func.func @torch.tensor_static_info_cast$downcast_first(
// CHECK-SAME: %[[T:.*]]: !torch.tensor) -> !torch.tensor {
// CHECK: return %[[T]] : !torch.tensor
func.func @torch.tensor_static_info_cast$downcast_first(%t: !torch.tensor) -> !torch.tensor {
%downcast = torch.tensor_static_info_cast %t : !torch.tensor to !torch.tensor<[?,?],f64>
%upcast = torch.tensor_static_info_cast %downcast : !torch.tensor<[?,?],f64> to !torch.tensor
return %upcast: !torch.tensor
}
// CHECK-LABEL: func.func @torch.tensor_static_info_cast$upcast_first(
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[?,?],f64>) -> !torch.tensor<[?,?],f64> {
// CHECK: return %[[T]] : !torch.tensor<[?,?],f64>
func.func @torch.tensor_static_info_cast$upcast_first(%t: !torch.tensor<[?,?],f64>) -> !torch.tensor<[?,?],f64> {
%upcast = torch.tensor_static_info_cast %t : !torch.tensor<[?,?],f64> to !torch.tensor
%downcast = torch.tensor_static_info_cast %upcast : !torch.tensor to !torch.tensor<[?,?],f64>
return %downcast: !torch.tensor<[?,?],f64>
}
// CHECK-LABEL: func.func @torch.tensor_static_info_cast$refine(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor {
// CHECK-NEXT: %[[RESULT:.*]] = torch.aten.relu %[[ARG]] : !torch.vtensor<[],f32> -> !torch.vtensor
// CHECK-NEXT: return %[[RESULT]] : !torch.vtensor
func.func @torch.tensor_static_info_cast$refine(%arg0: !torch.vtensor<[], f32>) -> !torch.vtensor {
%0 = torch.tensor_static_info_cast %arg0 : !torch.vtensor<[],f32> to !torch.vtensor
%1 = torch.aten.relu %0 : !torch.vtensor -> !torch.vtensor
return %1 : !torch.vtensor
}
// CHECK-LABEL: func.func @torch.tensor_static_info_cast$no_refine(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor) -> !torch.vtensor {
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[ARG]] : !torch.vtensor to !torch.vtensor<[],f32>
// CHECK: %[[RESULT:.*]] = torch.aten.relu %[[CAST]] : !torch.vtensor<[],f32> -> !torch.vtensor
// CHECK: return %[[RESULT]] : !torch.vtensor
func.func @torch.tensor_static_info_cast$no_refine(%arg0: !torch.vtensor) -> !torch.vtensor {
%0 = torch.tensor_static_info_cast %arg0 : !torch.vtensor to !torch.vtensor<[],f32>
%1 = torch.aten.relu %0 : !torch.vtensor<[],f32> -> !torch.vtensor
return %1 : !torch.vtensor
}
// CHECK-LABEL: func.func @torch.tensor_static_info_cast$refine_allowed_ops(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[],f32>) -> !torch.tuple<vtensor, vtensor> {
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[ARG]] : !torch.vtensor<[],f32> to !torch.vtensor
// CHECK: %[[RELU:.*]] = torch.aten.relu %[[ARG]] : !torch.vtensor<[],f32> -> !torch.vtensor
// CHECK: %[[RESULT:.*]] = torch.prim.TupleConstruct %[[CAST]], %[[RELU]] : !torch.vtensor, !torch.vtensor -> !torch.tuple<vtensor, vtensor>
// CHECK: return %[[RESULT]] : !torch.tuple<vtensor, vtensor>
func.func @torch.tensor_static_info_cast$refine_allowed_ops(%arg0: !torch.vtensor<[], f32>) -> !torch.tuple<vtensor, vtensor> {
%0 = torch.tensor_static_info_cast %arg0 : !torch.vtensor<[],f32> to !torch.vtensor
%1 = torch.aten.relu %0 : !torch.vtensor -> !torch.vtensor
// prim.TupleConstruct does not allow type refinements
%2 = torch.prim.TupleConstruct %0, %1 : !torch.vtensor, !torch.vtensor -> !torch.tuple<vtensor, vtensor>
return %2 : !torch.tuple<vtensor, vtensor>
}
// CHECK-LABEL: func.func @torch.prim.TupleIndex(
// CHECK-SAME: %[[T0:.*]]: !torch.tensor, %[[T1:.*]]: !torch.tensor, %[[T2:.*]]: !torch.tensor) -> !torch.tensor {
// CHECK: return %[[T1]] : !torch.tensor
func.func @torch.prim.TupleIndex(%t0: !torch.tensor, %t1: !torch.tensor, %t2: !torch.tensor) -> !torch.tensor {
%0 = torch.prim.TupleConstruct %t0, %t1, %t2 : !torch.tensor, !torch.tensor, !torch.tensor -> !torch.tuple<tensor, tensor, tensor>
%int1 = torch.constant.int 1
%1 = torch.prim.TupleIndex %0, %int1 : !torch.tuple<tensor, tensor, tensor>, !torch.int -> !torch.tensor
return %1 : !torch.tensor
}
// CHECK-LABEL: func.func @torch.prim.TupleIndex$out_of_bound(
// CHECK-SAME: %[[T0:.*]]: !torch.tensor, %[[T1:.*]]: !torch.tensor, %[[T2:.*]]: !torch.tensor) -> !torch.tensor {
// CHECK: %[[INDEX3:.*]] = torch.constant.int 3
// CHECK: %[[TUPLE:.*]] = torch.prim.TupleConstruct %[[T0]], %[[T1]], %[[T2]] :
// CHECK-SAME: !torch.tensor, !torch.tensor, !torch.tensor ->
// CHECK-SAME: !torch.tuple<tensor, tensor, tensor>
// CHECK: %[[RET:.*]] = torch.prim.TupleIndex %[[TUPLE]], %[[INDEX3]] :
// CHECK-SAME: !torch.tuple<tensor, tensor, tensor>, !torch.int -> !torch.tensor
// CHECK: return %[[RET]] : !torch.tensor
func.func @torch.prim.TupleIndex$out_of_bound(%t0: !torch.tensor, %t1: !torch.tensor, %t2: !torch.tensor) -> !torch.tensor {
%0 = torch.prim.TupleConstruct %t0, %t1, %t2 : !torch.tensor, !torch.tensor, !torch.tensor -> !torch.tuple<tensor, tensor, tensor>
%int3 = torch.constant.int 3
%1 = torch.prim.TupleIndex %0, %int3 : !torch.tuple<tensor, tensor, tensor>, !torch.int -> !torch.tensor
return %1 : !torch.tensor
}
// CHECK-LABEL: func.func @torch.prim.TupleIndex$adjust_type$tensor(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor<[7],f32>) -> !torch.tensor {
// CHECK: %[[RETURN:.*]] = torch.tensor_static_info_cast %[[ARG]] : !torch.tensor<[7],f32> to !torch.tensor
// CHECK: return %[[RETURN]] : !torch.tensor
func.func @torch.prim.TupleIndex$adjust_type$tensor(%arg0: !torch.tensor<[7],f32>) -> !torch.tensor {
%int0 = torch.constant.int 0
%0 = torch.prim.TupleConstruct %arg0 : !torch.tensor<[7],f32> -> !torch.tuple<tensor<[7],f32>>
%1 = torch.prim.TupleIndex %0, %int0 : !torch.tuple<tensor<[7],f32>>, !torch.int -> !torch.tensor
return %1 : !torch.tensor
}
// CHECK-LABEL: func.func @torch.prim.unchecked_cast$derefine
// CHECK-next: return %arg0 : !torch.list<int>
func.func @torch.prim.unchecked_cast$derefine(%arg0: !torch.list<int>) -> !torch.list<int> {
%0 = torch.derefine %arg0 : !torch.list<int> to !torch.optional<list<int>>
%1 = torch.prim.unchecked_cast %0 : !torch.optional<list<int>> -> !torch.list<int>
return %1 : !torch.list<int>
}
// CHECK-LABEL: func.func @torch.aten.Int.Tensor(
// CHECK-SAME: %[[NUM:.*]]: !torch.int) -> !torch.int {
// CHECK: %[[T:.*]] = torch.prim.NumToTensor.Scalar %[[NUM]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[NUM]] : !torch.int
func.func @torch.aten.Int.Tensor(%arg0: !torch.int) -> !torch.int {
%tensor = torch.prim.NumToTensor.Scalar %arg0: !torch.int -> !torch.vtensor<[],si64>
%scalar = torch.aten.Int.Tensor %tensor : !torch.vtensor<[],si64> -> !torch.int
return %scalar : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.Float.Tensor(
// CHECK-SAME: %[[NUM:.*]]: !torch.float) -> !torch.float {
// CHECK: %[[T:.*]] = torch.prim.NumToTensor.Scalar %[[NUM]] : !torch.float -> !torch.vtensor<[],f64>
// CHECK: return %[[NUM]] : !torch.float
func.func @torch.aten.Float.Tensor(%arg0: !torch.float) -> !torch.float {
%tensor = torch.prim.NumToTensor.Scalar %arg0: !torch.float -> !torch.vtensor<[],f64>
%scalar = torch.aten.Float.Tensor %tensor : !torch.vtensor<[],f64> -> !torch.float
return %scalar : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.squeeze$zero_rank(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> {
// CHECK-NEXT: return %[[ARG]] : !torch.tensor<[],f32>
func.func @torch.aten.squeeze$zero_rank(%arg0: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> {
%0 = torch.aten.squeeze %arg0 : !torch.tensor<[],f32> -> !torch.tensor<[],f32>
return %0 : !torch.tensor<[],f32>
}
// CHECK-LABEL: func.func @torch.aten.squeeze.dim$zero_rank(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> {
// CHECK-NEXT: return %[[ARG]] : !torch.tensor<[],f32>
func.func @torch.aten.squeeze.dim$zero_rank(%arg0: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> {
%int0 = torch.constant.int 0
%0 = torch.aten.squeeze.dim %arg0, %int0 : !torch.tensor<[],f32>, !torch.int -> !torch.tensor<[],f32>
return %0 : !torch.tensor<[],f32>
}
// CHECK-LABEL: func.func @torch.aten.to.dtype$same_dtype(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor<*,f32>) -> !torch.tensor<*,f32> {
// CHECK-NEXT: return %[[ARG]] : !torch.tensor<*,f32>
func.func @torch.aten.to.dtype$same_dtype(%arg0: !torch.tensor<*,f32>) -> !torch.tensor<*,f32> {
%none = torch.constant.none
%false = torch.constant.bool false
%int6 = torch.constant.int 6
%0 = torch.aten.to.dtype %arg0, %int6, %false, %false, %none : !torch.tensor<*,f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.tensor<*,f32>
return %0 : !torch.tensor<*,f32>
}
// CHECK-LABEL: func.func @torch.aten.to.dtype$no_fold$unk_dtype(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor) -> !torch.tensor {
// CHECK: %[[RESULT:.*]] = torch.aten.to.dtype %[[ARG]], %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}} : !torch.tensor, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.tensor
// CHECK: return %[[RESULT]] : !torch.tensor
func.func @torch.aten.to.dtype$no_fold$unk_dtype(%arg0: !torch.tensor) -> !torch.tensor {
%none = torch.constant.none
%false = torch.constant.bool false
%int6 = torch.constant.int 6
%0 = torch.aten.to.dtype %arg0, %int6, %false, %false, %none : !torch.tensor, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.tensor
return %0 : !torch.tensor
}
// CHECK-LABEL: func.func @torch.aten.view$1D(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor<[?],f32>) -> !torch.tensor<[?],f32> {
// CHECK-NEXT: return %[[ARG]] : !torch.tensor<[?],f32>
func.func @torch.aten.view$1D(%arg0: !torch.tensor<[?],f32>) -> !torch.tensor<[?],f32> {
%int-1 = torch.constant.int -1
%0 = torch.prim.ListConstruct %int-1 : (!torch.int) -> !torch.list<int>
%1 = torch.aten.view %arg0, %0 : !torch.tensor<[?],f32>, !torch.list<int> -> !torch.tensor<[?],f32>
return %1 : !torch.tensor<[?],f32>
}
// CHECK-LABEL: func.func @torch.aten.div.float$fold_zero_dividend(
// CHECK: %[[CST0:.*]] = torch.constant.float 0.000000e+00
// CHECK: return %[[CST0]] : !torch.float
func.func @torch.aten.div.float$fold_zero_dividend() -> !torch.float {
%float0 = torch.constant.float 0.0
%float5 = torch.constant.float 5.0
%0 = torch.aten.div.float %float0, %float5 : !torch.float, !torch.float -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.div.float$fold_one_divisor(
// CHECK: %[[CST4:.*]] = torch.constant.float 4.000000e+00
// CHECK: return %[[CST4]] : !torch.float
func.func @torch.aten.div.float$fold_one_divisor() -> !torch.float {
%float4 = torch.constant.float 4.0
%float1 = torch.constant.float 1.0
%0 = torch.aten.div.float %float4, %float1 : !torch.float, !torch.float -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.div.float$fold_cst_operands(
// CHECK: %[[CST2:.*]] = torch.constant.float 2.000000e+00
// CHECK: return %[[CST2]] : !torch.float
func.func @torch.aten.div.float$fold_cst_operands() -> !torch.float {
%float4 = torch.constant.float 4.0
%float2 = torch.constant.float 2.0
%0 = torch.aten.div.float %float4, %float2 : !torch.float, !torch.float -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.to.dtype_layout$same_dtype(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor<[?,?],f32>) -> !torch.tensor<[?,?],f32> {
// CHECK-NEXT: return %[[ARG]] : !torch.tensor<[?,?],f32>
func.func @torch.aten.to.dtype_layout$same_dtype(%arg0: !torch.tensor<[?,?],f32>) -> !torch.tensor<[?,?],f32> {
%none = torch.constant.none
%false = torch.constant.bool false
%int6 = torch.constant.int 6
%0 = torch.aten.to.dtype_layout %arg0, %int6, %none, %none, %none, %false, %false, %none : !torch.tensor<[?,?],f32>, !torch.int, !torch.none, !torch.none, !torch.none, !torch.bool, !torch.bool, !torch.none -> !torch.tensor<[?,?],f32>
return %0 : !torch.tensor<[?,?],f32>
}
// CHECK-LABEL: func.func @torch.aten.ge.float$same_operand(
// CHECK-SAME: %{{.*}}: !torch.float) -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.ge.float$same_operand(%arg0: !torch.float) -> !torch.bool {
%2 = torch.aten.ge.float %arg0, %arg0: !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ge.float$same_value() -> !torch.bool {
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.ge.float$same_value() -> !torch.bool {
%float4 = torch.constant.float 4.0
%float4_0 = torch.constant.float 4.0
%2 = torch.aten.ge.float %float4, %float4_0: !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ge.float$different_value() -> !torch.bool {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.ge.float$different_value() -> !torch.bool {
%float4 = torch.constant.float 4.0
%float4_0 = torch.constant.float 5.0
%2 = torch.aten.ge.float %float4, %float4_0: !torch.float, !torch.float -> !torch.bool
return %2 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.ceil.float$fold_cst() -> !torch.int {
// CHECK: %[[CST2:.*]] = torch.constant.int 2
// CHECK: return %[[CST2]] : !torch.int
func.func @torch.aten.ceil.float$fold_cst() -> !torch.int {
%float = torch.constant.float 1.5
%1 = torch.aten.ceil.float %float : !torch.float -> !torch.int
return %1 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.ceil.float$no_fold(
// CHECK-SAME: %[[ARG:.*]]: !torch.float) -> !torch.int {
// CHECK: %[[RESULT:.*]] = torch.aten.ceil.float %[[ARG]] : !torch.float -> !torch.int
// CHECK: return %[[RESULT]] : !torch.int
func.func @torch.aten.ceil.float$no_fold(%arg0 : !torch.float) -> !torch.int {
%1 = torch.aten.ceil.float %arg0 : !torch.float -> !torch.int
return %1 : !torch.int
}
// CHECK-LABEL: func.func @torch.aten.sqrt.int$fold_cst() -> !torch.float {
// CHECK: %[[CST:.*]] = torch.constant.float 2.2360679774997898
// CHECK: return %[[CST]] : !torch.float
func.func @torch.aten.sqrt.int$fold_cst() -> !torch.float {
%int = torch.constant.int 5
%0 = torch.aten.sqrt.int %int : !torch.int -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.sqrt.int$no_fold(
// CHECK-SAME: %[[ARG:.*]]: !torch.int) -> !torch.float {
// CHECK: %[[RESULT:.*]] = torch.aten.sqrt.int %[[ARG]] : !torch.int -> !torch.float
// CHECK: return %[[RESULT]] : !torch.float
func.func @torch.aten.sqrt.int$no_fold(%arg0 : !torch.int) -> !torch.float {
%0 = torch.aten.sqrt.int %arg0 : !torch.int -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.Bool.float$fold_cst() -> !torch.bool {
// CHECK: %[[CST2:.*]] = torch.constant.bool true
// CHECK: return %[[CST2]] : !torch.bool
func.func @torch.aten.Bool.float$fold_cst() -> !torch.bool {
%float = torch.constant.float 1.5
%1 = torch.aten.Bool.float %float : !torch.float -> !torch.bool
return %1 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.Bool.int$fold_cst() -> !torch.bool {
// CHECK: %[[CST2:.*]] = torch.constant.bool true
// CHECK: return %[[CST2]] : !torch.bool
func.func @torch.aten.Bool.int$fold_cst() -> !torch.bool {
%int = torch.constant.int 2
%1 = torch.aten.Bool.int %int : !torch.int -> !torch.bool
return %1 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.add.Tensor$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT0]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR3:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR3]] : !torch.vtensor<[],si64>
func.func @torch.aten.add.Tensor$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
%int0 = torch.constant.int 0
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.NumToTensor.Scalar %int0 : !torch.int -> !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.add.Tensor %0, %1, %int3 : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: @torch.aten.add.Tensor$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR2]] : !torch.vtensor<[],si64>
func.func @torch.aten.add.Tensor$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
%int0 = torch.constant.int 0
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.vtensor.literal(dense<0> : tensor<si64>) : !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.add.Tensor %0, %1, %int3 : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: @torch.aten.size$copy(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3],f32>) -> !torch.list<int> {
// CHECK: %[[TWO:.*]] = torch.constant.int 2
// CHECK: %[[THREE:.*]] = torch.constant.int 3
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct %[[TWO]], %[[THREE]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: return %[[LIST]] : !torch.list<int>
// CHECK: }
func.func @torch.aten.size$copy(%arg0: !torch.vtensor<[2,3],f32>) -> !torch.list<int> {
%cast = torch.tensor_static_info_cast %arg0 : !torch.vtensor<[2,3],f32> to !torch.vtensor
%non_value_tensor = torch.copy.to_tensor %cast : !torch.tensor
%value_tensor = torch.copy.to_vtensor %non_value_tensor : !torch.vtensor
%size = torch.aten.size %value_tensor : !torch.vtensor -> !torch.list<int>
return %size : !torch.list<int>
}
// CHECK-LABEL: @torch.aten.size.int$copy(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3],f32>) -> !torch.int {
// CHECK: %[[TWO:.*]] = torch.constant.int 2
// CHECK: return %[[TWO]] : !torch.int
// CHECK: }
func.func @torch.aten.size.int$copy(%arg0: !torch.vtensor<[2,3],f32>) -> !torch.int {
%cast = torch.tensor_static_info_cast %arg0 : !torch.vtensor<[2,3],f32> to !torch.vtensor
%non_value_tensor = torch.copy.to_tensor %cast : !torch.tensor
%value_tensor = torch.copy.to_vtensor %non_value_tensor : !torch.vtensor
%zero = torch.constant.int 0
%size = torch.aten.size.int %value_tensor, %zero : !torch.vtensor, !torch.int -> !torch.int
return %size : !torch.int
}
// CHECK-LABEL: func.func @prim.ListUnpack$fold_list(
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[2,3],f32>,
// CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[2,3],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>) {
// CHECK: return %[[ARG0]], %[[ARG1]] : !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>
func.func @prim.ListUnpack$fold_list(%arg0: !torch.vtensor<[2,3],f32>, %arg1: !torch.vtensor<[2,3],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>) {
%0 = torch.prim.ListConstruct %arg0, %arg1 : (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>) -> !torch.list<vtensor>
%1:2 = torch.prim.ListUnpack %0 : !torch.list<vtensor> -> !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>
return %1#0, %1#1 : !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>
}
// CHECK-LABEL: func.func @torch.aten.div.Tensor_mode$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT3]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR2]] : !torch.vtensor<[],si64>
func.func @torch.aten.div.Tensor_mode$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
%int6 = torch.constant.int 6
%str = torch.constant.str "floor"
%0 = torch.vtensor.literal(dense<2> : tensor<si64>) : !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int6 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.div.Tensor_mode %1, %0, %str : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.str -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.div.Tensor_mode$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR3:.*]] = torch.prim.NumToTensor.Scalar %[[INT3]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR3]] : !torch.vtensor<[],si64>
func.func @torch.aten.div.Tensor_mode$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
%int6 = torch.constant.int 6
%int2 = torch.constant.int 2
%str = torch.constant.str "floor"
%0 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int6 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.div.Tensor_mode %1, %0, %str : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.str -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.add.Scalar$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT0]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR1]] : !torch.vtensor<[],si64>
func.func @torch.aten.add.Scalar$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
%int0 = torch.constant.int 0
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.NumToTensor.Scalar %int0 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.add.Scalar %0, %int2, %int3 : !torch.vtensor<[],si64>, !torch.int, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.add.Scalar$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR0]] : !torch.vtensor<[],si64>
func.func @torch.aten.add.Scalar$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.vtensor.literal(dense<0> : tensor<si64>) : !torch.vtensor<[],si64>
%2 = torch.aten.add.Scalar %0, %int2, %int3 : !torch.vtensor<[],si64>, !torch.int, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.sub.Tensor$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT_6:.*]] = torch.constant.int -6
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT0]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR3:.*]] = torch.prim.NumToTensor.Scalar %[[INT_6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR3]] : !torch.vtensor<[],si64>
func.func @torch.aten.sub.Tensor$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
%int0 = torch.constant.int 0
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.NumToTensor.Scalar %int0 : !torch.int -> !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.sub.Tensor %0, %1, %int3 : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: @torch.aten.sub.Tensor$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT_6:.*]] = torch.constant.int -6
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT_6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR2]] : !torch.vtensor<[],si64>
func.func @torch.aten.sub.Tensor$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
%int0 = torch.constant.int 0
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.vtensor.literal(dense<0> : tensor<si64>) : !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.sub.Tensor %0, %1, %int3 : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.sub.Scalar$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT_6:.*]] = torch.constant.int -6
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT0]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT_6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR1]] : !torch.vtensor<[],si64>
func.func @torch.aten.sub.Scalar$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
%int0 = torch.constant.int 0
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.NumToTensor.Scalar %int0 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.sub.Scalar %0, %int2, %int3 : !torch.vtensor<[],si64>, !torch.int, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.sub.Scalar$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT_6:.*]] = torch.constant.int -6
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT_6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR0]] : !torch.vtensor<[],si64>
func.func @torch.aten.sub.Scalar$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.vtensor.literal(dense<0> : tensor<si64>) : !torch.vtensor<[],si64>
%2 = torch.aten.sub.Scalar %0, %int2, %int3 : !torch.vtensor<[],si64>, !torch.int, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.mul.Scalar$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6]] = torch.constant.int 6
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR0]] : !torch.vtensor<[],si64>
func.func @torch.aten.mul.Scalar$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
%int3 = torch.constant.int 3
%0 = torch.vtensor.literal(dense<2> : tensor<si64>) : !torch.vtensor<[],si64>
%2 = torch.aten.mul.Scalar %0, %int3 : !torch.vtensor<[],si64>, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.mul.Scalar$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR1]] : !torch.vtensor<[],si64>
func.func @torch.aten.mul.Scalar$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.mul.Scalar %0, %int3 : !torch.vtensor<[],si64>, !torch.int -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.mul.Tensor$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6]] = torch.constant.int 6
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR0]] : !torch.vtensor<[],si64>
func.func @torch.aten.mul.Tensor$canonicalize_literal_0d() -> !torch.vtensor<[],si64> {
%0 = torch.vtensor.literal(dense<2> : tensor<si64>) : !torch.vtensor<[],si64>
%1 = torch.vtensor.literal(dense<3> : tensor<si64>) : !torch.vtensor<[],si64>
%2 = torch.aten.mul.Tensor %0, %1 : !torch.vtensor<[],si64>, !torch.vtensor<[],si64> -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.mul.Tensor$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[PR0:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT3]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR2]] : !torch.vtensor<[],si64>
func.func @torch.aten.mul.Tensor$canonicalize_numtotensor_0d() -> !torch.vtensor<[],si64> {
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int3 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.mul.Tensor %0, %1 : !torch.vtensor<[],si64>, !torch.vtensor<[],si64> -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.div.Tensor_mode$canonicalize_numtotensor_0d_trunc() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT2]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR3:.*]] = torch.prim.NumToTensor.Scalar %[[INT3]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR3]] : !torch.vtensor<[],si64>
func.func @torch.aten.div.Tensor_mode$canonicalize_numtotensor_0d_trunc() -> !torch.vtensor<[],si64> {
%int6 = torch.constant.int 6
%int2 = torch.constant.int 2
%str = torch.constant.str "trunc"
%0 = torch.prim.NumToTensor.Scalar %int2 : !torch.int -> !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int6 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.div.Tensor_mode %1, %0, %str : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.str -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}
// CHECK-LABEL: func.func @torch.aten.div.Tensor_mode$canonicalize_literal_0d_trunc() -> !torch.vtensor<[],si64> {
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[PR1:.*]] = torch.prim.NumToTensor.Scalar %[[INT6]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: %[[PR2:.*]] = torch.prim.NumToTensor.Scalar %[[INT3]] : !torch.int -> !torch.vtensor<[],si64>
// CHECK: return %[[PR2]] : !torch.vtensor<[],si64>
func.func @torch.aten.div.Tensor_mode$canonicalize_literal_0d_trunc() -> !torch.vtensor<[],si64> {
%int6 = torch.constant.int 6
%str = torch.constant.str "trunc"
%0 = torch.vtensor.literal(dense<2> : tensor<si64>) : !torch.vtensor<[],si64>
%1 = torch.prim.NumToTensor.Scalar %int6 : !torch.int -> !torch.vtensor<[],si64>
%2 = torch.aten.div.Tensor_mode %1, %0, %str : !torch.vtensor<[],si64>, !torch.vtensor<[],si64>, !torch.str -> !torch.vtensor<[],si64>
return %2 : !torch.vtensor<[],si64>
}