mirror of https://github.com/llvm/torch-mlir
231 lines
7.3 KiB
Python
231 lines
7.3 KiB
Python
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
# Also available under a BSD-style license. See LICENSE.
|
||
|
"""
|
||
|
Translator from torch.jit.ScriptFunction to MLIR.
|
||
|
|
||
|
|
||
|
The following defines a set of classes for converting types used by Python and PyTorch into MLIR types from the
|
||
|
`torch` dialect.
|
||
|
|
||
|
The expected use of this module is to create an instance of one of the classes below, and then calling the
|
||
|
`to_mlir` method to generate the MLIR representation of the type.
|
||
|
|
||
|
Information about what types are supported by each class can be found in docstrings of each of the classes.
|
||
|
|
||
|
In addition this module defines a function that take a torch.jit.ScriptFunction and converts it into an MLIR module.
|
||
|
|
||
|
The expected use for this module is to use the function
|
||
|
`build_module(jit_function: torch.jit.ScriptFunction annotation: Annotation) -> ir.Module`
|
||
|
to convert the TorchScript function into MLIR using the `torch` dialect.
|
||
|
"""
|
||
|
|
||
|
import abc
|
||
|
from typing import Any, Optional, Iterable
|
||
|
from typing import Union
|
||
|
|
||
|
import torch
|
||
|
from torch.jit import ScriptFunction
|
||
|
|
||
|
from torch_mlir import ir
|
||
|
from torch_mlir.dialects.builtin import FuncOp
|
||
|
from torch_mlir.dialects.torch.importer.jit_ir import ModuleBuilder
|
||
|
|
||
|
|
||
|
class TorchMlirType(abc.ABC):
|
||
|
"""
|
||
|
A `TorchMlirType` is an object that produces MLIR
|
||
|
types in the `torch` dialect. The only requirement
|
||
|
for a class to be a subclass of `TorchMlirType` is
|
||
|
to define a `to_mlir(self, ir.Context) -> ir.Type`.
|
||
|
Each class is allowed to have different types of
|
||
|
__init__ methods depending on the information they
|
||
|
require to produce the given MLIR representation.
|
||
|
"""
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def to_mlir(self, context: ir.Context) -> ir.Type:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TorchTensorTypeError(Exception):
|
||
|
def __init__(self, value: str):
|
||
|
super().__init__()
|
||
|
self.value = value
|
||
|
|
||
|
def __str__(self) -> str:
|
||
|
return self.value
|
||
|
|
||
|
|
||
|
class TorchTensorType(TorchMlirType):
|
||
|
"""
|
||
|
This class is used to generate types of the form
|
||
|
!torch.tensor and !torch.vtensor<SHAPE, DTYPE>,
|
||
|
where SHAPE is a list representing the shape of the tensor,
|
||
|
and DTYPE is an MLIR data type.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
shape: Optional[Iterable[Optional[int]]] = None,
|
||
|
dtype: Optional[torch.dtype] = None,
|
||
|
):
|
||
|
self.shape = shape
|
||
|
self.dtype = dtype
|
||
|
|
||
|
if dtype is None and shape is not None:
|
||
|
err = "If shape is specified, dtype must also be specified"
|
||
|
raise TorchTensorTypeError(err)
|
||
|
|
||
|
def __str__(self):
|
||
|
return f"Torch Tensor (shape={self.shape}, dtype={self.dtype})"
|
||
|
|
||
|
def to_mlir(self, context: ir.Context) -> ir.Type:
|
||
|
if self.dtype is None:
|
||
|
return ir.Type.parse("!torch.tensor", context=context)
|
||
|
|
||
|
shape_asm = self._shape_to_mlir_asm()
|
||
|
dtype_asm = self._dtype_to_mlir_asm()
|
||
|
return ir.Type.parse(
|
||
|
f"!torch.vtensor<{shape_asm},{dtype_asm}>", context=context
|
||
|
)
|
||
|
|
||
|
def _shape_to_mlir_asm(self) -> str:
|
||
|
if self.shape is None:
|
||
|
return "*"
|
||
|
|
||
|
str_sizes = map(lambda x: "?" if x is None else str(x), self.shape)
|
||
|
return f'[{",".join(str_sizes)}]'
|
||
|
|
||
|
def _dtype_to_mlir_asm(self) -> str:
|
||
|
if self.dtype in [torch.float64]:
|
||
|
return "f64"
|
||
|
if self.dtype in [torch.float, torch.float32]:
|
||
|
return "f32"
|
||
|
if self.dtype in [torch.int, torch.int32]:
|
||
|
return "si32"
|
||
|
if self.dtype in [torch.int64]:
|
||
|
return "si64"
|
||
|
if self.dtype in [torch.bool]:
|
||
|
return "i1"
|
||
|
|
||
|
raise NotImplementedError(f"Unsupported dtype: {self.dtype}")
|
||
|
|
||
|
|
||
|
class TorchNnModuleType(TorchMlirType):
|
||
|
"""This class is used to generate types for `!torch.nn.Module`s."""
|
||
|
|
||
|
def __init__(self, module_name: str):
|
||
|
self.module_name = module_name
|
||
|
|
||
|
def __str__(self):
|
||
|
return "torch.nn.Module"
|
||
|
|
||
|
def to_mlir(self, context: ir.Context) -> ir.Type:
|
||
|
return ir.Type.parse(f'!torch.nn.Module<"{self.module_name}">', context=context)
|
||
|
|
||
|
|
||
|
class PythonType(TorchMlirType):
|
||
|
"""
|
||
|
This class is used to convert regular Python types
|
||
|
into their corresponding `torch` dialect representation.
|
||
|
The list of supported types can be found in the dictionary
|
||
|
`_type_to_asm_dict`.
|
||
|
"""
|
||
|
|
||
|
_type_to_asm_dict = {
|
||
|
bool: "!torch.bool",
|
||
|
int: "!torch.int",
|
||
|
type(None): "!torch.none",
|
||
|
}
|
||
|
|
||
|
def __init__(self, type_: Any):
|
||
|
self.type_ = type_
|
||
|
|
||
|
def __str__(self):
|
||
|
return str(self.type_)
|
||
|
|
||
|
def to_mlir(self, context: ir.Context) -> ir.Type:
|
||
|
asm = self._type_to_asm_dict.get(self.type_)
|
||
|
if asm is None:
|
||
|
raise NotImplementedError(f"Unsupported type: {self.type_}")
|
||
|
return ir.Type.parse(asm, context=context)
|
||
|
|
||
|
|
||
|
# TODO: This functionality should be incorporated into ModuleBuilder.import_function.
|
||
|
class Annotation:
|
||
|
def __init__(self, types: Iterable[Union[TorchTensorType, type]]):
|
||
|
self.types = list(
|
||
|
map(lambda t: PythonType(t) if isinstance(t, type) else t, types)
|
||
|
)
|
||
|
|
||
|
def __str__(self):
|
||
|
result = f"Annotation instance with {len(self.types)} types\n"
|
||
|
for e, type_ in enumerate(self.types):
|
||
|
result += f" Type of argument {e + 1}: {str(type_)}\n"
|
||
|
return result
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(self.types)
|
||
|
|
||
|
|
||
|
class AnnotationConverter:
|
||
|
@staticmethod
|
||
|
def to_mlir_array_attr(annotation: Annotation, context: ir.Context) -> ir.ArrayAttr:
|
||
|
dict_attrs = []
|
||
|
for type_ in annotation:
|
||
|
if not isinstance(type_, TorchTensorType):
|
||
|
dict_attrs.append(ir.DictAttr.get({}, context=context))
|
||
|
continue
|
||
|
|
||
|
ir_type = type_.to_mlir(context)
|
||
|
with context:
|
||
|
type_attr = ir.TypeAttr.get(ir_type)
|
||
|
dict_attr = ir.DictAttr.get({"torch.type_bound": type_attr})
|
||
|
dict_attrs.append(dict_attr)
|
||
|
|
||
|
return ir.ArrayAttr.get(dict_attrs, context=context)
|
||
|
|
||
|
|
||
|
def get_func_op_with_name(module: ir.Module, name: str) -> Optional[FuncOp]:
|
||
|
with module.context:
|
||
|
name_attr = ir.StringAttr.get(name)
|
||
|
for op in module.body.operations:
|
||
|
if isinstance(op, FuncOp) and op.name == name_attr:
|
||
|
return op
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
def build_module(jit_function: ScriptFunction, annotations) -> ir.Module:
|
||
|
"""Translate input function into an MLIR module in the `torch` dialect.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
jit_function: ScriptFunction
|
||
|
Function in TorchScript IR to turn into MLIR.
|
||
|
annotation: Annotation
|
||
|
Annotation object representing the types of
|
||
|
the operands of `jit_function`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ir.Module
|
||
|
Translation of the input module into an MLIR module
|
||
|
"""
|
||
|
mb = ModuleBuilder()
|
||
|
mb.import_function(jit_function)
|
||
|
|
||
|
func_op = get_func_op_with_name(mb.module, jit_function.name)
|
||
|
assert (
|
||
|
func_op is not None
|
||
|
), "Unable to find FuncOp in new module. Make sure function was imported correctly into ModuleBuilder"
|
||
|
|
||
|
func_annotation = Annotation(annotations)
|
||
|
arg_attrs = AnnotationConverter.to_mlir_array_attr(func_annotation, mb.context)
|
||
|
func_op.attributes["arg_attrs"] = arg_attrs
|
||
|
|
||
|
return mb.module
|