torch-mlir/lib/Dialect/TMTensor/Transforms/Bufferize.cpp

160 lines
6.3 KiB
C++
Raw Normal View History

//===- Bufferize.cpp - Bufferization of tmtensor ops ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "torch-mlir-dialects/Dialect/TMTensor/IR/TMTensorDialect.h"
#include "torch-mlir-dialects/Dialect/TMTensor/IR/TMTensorOps.h"
#include "torch-mlir-dialects/Dialect/TMTensor/Transforms/PassDetail.h"
#include "torch-mlir-dialects/Dialect/TMTensor/Transforms/Passes.h"
using namespace ::mlir;
using namespace ::mlir::torch::TMTensor;
static Value cloneMemref(Location loc, Value memref, OpBuilder &b) {
auto memrefType = memref.getType().cast<MemRefType>();
auto alloc = b.create<memref::AllocOp>(
loc, memref::getMixedSizes(b, loc, memref), memrefType.getElementType());
b.create<memref::CopyOp>(loc, memref, alloc);
return alloc;
}
static LogicalResult
allocateBuffersForResults(Location loc, TMTensorOp tmtensorOp,
ValueRange outputs,
SmallVectorImpl<Value> &resultBuffers, OpBuilder &b) {
// Lazily compute loopRanges.
SmallVector<Range, 4> loopRanges;
// Allocate a buffer for every tensor result.
assert(tmtensorOp.getNumOutputs() == tmtensorOp->getNumResults());
for (const auto &en : llvm::enumerate(tmtensorOp->getResultTypes())) {
size_t resultIndex = en.index();
Type resultType = en.value();
auto tensorType = resultType.dyn_cast<RankedTensorType>();
if (tensorType == nullptr) {
tmtensorOp.emitOpError()
<< "tensor to buffer conversion expects ranked tensor results";
return failure();
}
auto tensorShape = tensorType.getShape();
auto memrefType = MemRefType::get(tensorShape, tensorType.getElementType());
Value resultTensor = outputs[resultIndex];
// Clone output buffers whose value is actually used.
OpOperand *tiedOpOperand = tmtensorOp.getOutputOperand(resultIndex);
if (tmtensorOp.payloadUsesValueFromOperand(tiedOpOperand)) {
resultBuffers.push_back(cloneMemref(loc, resultTensor, b));
continue;
}
// Allocate buffers for statically-shaped results.
if (memrefType.hasStaticShape()) {
resultBuffers.push_back(b.create<memref::AllocOp>(loc, memrefType));
continue;
}
resultBuffers.push_back(b.create<memref::AllocOp>(
loc, memref::getMixedSizes(b, loc, resultTensor),
memrefType.getElementType()));
}
return success();
}
/// Create TMTensor op on buffers given the original tensor-based operation and
/// the buffers for the outputs.
static TMTensorOp createTMTensorOpOnBuffers(ConversionPatternRewriter &rewriter,
TMTensorOp tmtensorOp,
ValueRange inputs,
ValueRange outputs) {
SmallVector<Value, 8> newOperands = inputs;
newOperands.append(outputs.begin(), outputs.end());
return cast<TMTensorOp>(
tmtensorOp.clone(rewriter, tmtensorOp->getLoc(), {}, newOperands));
}
/// Generic conversion pattern that matches any TMTensorOp. This avoids template
/// instantiating one pattern for each TMTensorOp.
class BufferizeAnyTMTensorOp : public OpInterfaceConversionPattern<TMTensorOp> {
public:
using OpInterfaceConversionPattern<TMTensorOp>::OpInterfaceConversionPattern;
LogicalResult
matchAndRewrite(TMTensorOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Location loc = op.getLoc();
SmallVector<Value, 2> newOutputBuffers;
SmallVector<Value> outputs(operands.begin() + op.getNumInputs(),
operands.end());
if (failed(allocateBuffersForResults(loc, op, outputs, newOutputBuffers,
rewriter))) {
return op.emitOpError()
<< "Failed to allocate buffers for tensor results.";
}
SmallVector<Value> inputs(operands.begin(),
operands.begin() + op.getNumInputs());
createTMTensorOpOnBuffers(rewriter, op, inputs, newOutputBuffers);
// Replace the results of the old op with the new output buffers.
rewriter.replaceOp(op, newOutputBuffers);
return success();
}
};
namespace {
/// Converts TMTensor operations that work on tensor-type operands or results to
/// work on buffers.
struct TMTensorBufferizePass
: public TMTensorBufferizeBase<TMTensorBufferizePass> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<bufferization::BufferizationDialect, memref::MemRefDialect,
torch::TMTensor::TMTensorDialect>();
}
void runOnOperation() override {
MLIRContext &context = getContext();
ConversionTarget target(context);
bufferization::BufferizeTypeConverter typeConverter;
// Mark all Standard operations legal.
target.addLegalDialect<arith::ArithDialect, func::FuncDialect,
memref::MemRefDialect, tensor::TensorDialect>();
// Mark all TMTensor operations illegal as long as they work on tensors.
auto isLegalOperation = [&](Operation *op) {
return typeConverter.isLegal(op);
};
target.addDynamicallyLegalDialect<TMTensorDialect>(isLegalOperation);
RewritePatternSet patterns(&context);
patterns.add<BufferizeAnyTMTensorOp>(typeConverter, patterns.getContext());
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
torch::TMTensor::createTMTensorBufferizePass() {
return std::make_unique<TMTensorBufferizePass>();
}