mirror of https://github.com/llvm/torch-mlir
47 lines
2.6 KiB
MLIR
47 lines
2.6 KiB
MLIR
|
// RUN: npcomp-opt -torch-adjust-calling-conventions -allow-unregistered-dialect -split-input-file %s | FileCheck %s
|
||
|
|
||
|
// CHECK-LABEL: func @basic(
|
||
|
// CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<[2,3,?]:f32>) -> !numpy.ndarray<*:!numpy.any_dtype> {
|
||
|
// CHECK: %[[RET:.*]] = numpy.static_info_cast %[[ARG]] : !numpy.ndarray<[2,3,?]:f32> to !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
// CHECK: return %[[RET]] : !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
func @basic(%arg0: !numpy.ndarray<*:!numpy.any_dtype> {torch.type_bound = !numpy.ndarray<[2,3,?]:f32>}) -> !numpy.ndarray<*:!numpy.any_dtype> {
|
||
|
return %arg0 : !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
}
|
||
|
|
||
|
// CHECK-LABEL: func @no_type_bound(
|
||
|
// CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> !numpy.ndarray<*:!numpy.any_dtype> {
|
||
|
// CHECK: return %[[ARG]] : !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
func @no_type_bound(%arg0: !numpy.ndarray<*:!numpy.any_dtype>) -> !numpy.ndarray<*:!numpy.any_dtype> {
|
||
|
return %arg0 : !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
}
|
||
|
|
||
|
// CHECK-LABEL: func @call(
|
||
|
// CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<[2,3,?]:f32>) -> !numpy.ndarray<*:!numpy.any_dtype> {
|
||
|
// CHECK: %[[SHAPE_ERASED:.*]] = numpy.static_info_cast %[[ARG]] : !numpy.ndarray<[2,3,?]:f32> to !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
// CHECK: %[[SHAPED:.*]] = numpy.static_info_cast %[[SHAPE_ERASED]] : !numpy.ndarray<*:!numpy.any_dtype> to !numpy.ndarray<[2,3,?]:f32>
|
||
|
// CHECK: %[[RES:.*]] = call @call(%[[SHAPED]]) : (!numpy.ndarray<[2,3,?]:f32>) -> !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
// CHECK: return %[[SHAPE_ERASED]] : !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
func @call(%arg0: !numpy.ndarray<*:!numpy.any_dtype> {torch.type_bound = !numpy.ndarray<[2,3,?]:f32>}) -> !numpy.ndarray<*:!numpy.any_dtype> {
|
||
|
%0 = call @call(%arg0) : (!numpy.ndarray<*:!numpy.any_dtype>) -> !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
return %arg0 : !numpy.ndarray<*:!numpy.any_dtype>
|
||
|
}
|
||
|
|
||
|
// CHECK-LABEL: func @none_return() {
|
||
|
// CHECK: %[[NONE:.*]] = basicpy.singleton : !basicpy.NoneType
|
||
|
// CHECK: return
|
||
|
func @none_return() -> !basicpy.NoneType {
|
||
|
%1 = basicpy.singleton : !basicpy.NoneType
|
||
|
return %1 : !basicpy.NoneType
|
||
|
}
|
||
|
|
||
|
// CHECK-LABEL: func @none_call_return() {
|
||
|
// CHECK: call @none_return() : () -> ()
|
||
|
// CHECK: %[[NONE:.*]] = basicpy.singleton : !basicpy.NoneType
|
||
|
// CHECK: "test.use"(%[[NONE]]) : (!basicpy.NoneType) -> ()
|
||
|
// CHECK: return
|
||
|
func @none_call_return() {
|
||
|
%0 = call @none_return() : () -> !basicpy.NoneType
|
||
|
"test.use"(%0) : (!basicpy.NoneType) -> ()
|
||
|
return
|
||
|
}
|