mirror of https://github.com/llvm/torch-mlir
84 lines
2.4 KiB
Python
84 lines
2.4 KiB
Python
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
|
||
|
import torch
|
||
|
from npcomp_torchscript.e2e_test.framework import TestUtils
|
||
|
from npcomp_torchscript.e2e_test.registry import register_test_case
|
||
|
from npcomp_torchscript.annotations import annotate_args, export
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class Conv2dNoPaddingModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
torch.manual_seed(0)
|
||
|
self.conv = torch.nn.Conv2d(2, 10, 3, bias=False)
|
||
|
self.train(False)
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1, -1, -1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, x):
|
||
|
return self.conv(x)
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: Conv2dNoPaddingModule())
|
||
|
def Conv2dNoPaddingModule_basic(module, tu: TestUtils):
|
||
|
t = tu.rand(5, 2, 10, 20)
|
||
|
module.forward(t)
|
||
|
|
||
|
|
||
|
class Conv2dWithPaddingModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
torch.manual_seed(0)
|
||
|
self.conv = torch.nn.Conv2d(2, 10, 3, bias=False, padding=3)
|
||
|
self.train(False)
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1, -1, -1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, x):
|
||
|
return self.conv(x)
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: Conv2dWithPaddingModule())
|
||
|
def Conv2dWithPaddingModule_basic(module, tu: TestUtils):
|
||
|
t = tu.rand(5, 2, 10, 20)
|
||
|
module.forward(t)
|
||
|
|
||
|
|
||
|
class Conv2dWithPaddingDilationStrideModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
torch.manual_seed(0)
|
||
|
self.conv = torch.nn.Conv2d(in_channels=2,
|
||
|
out_channels=10,
|
||
|
kernel_size=3,
|
||
|
padding=3,
|
||
|
stride=2,
|
||
|
dilation=3,
|
||
|
bias=False)
|
||
|
self.train(False)
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1, -1, -1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, x):
|
||
|
return self.conv(x)
|
||
|
|
||
|
|
||
|
@register_test_case(
|
||
|
module_factory=lambda: Conv2dWithPaddingDilationStrideModule())
|
||
|
def Conv2dWithPaddingDilationStrideModule_basic(module, tu: TestUtils):
|
||
|
t = tu.rand(5, 2, 10, 20)
|
||
|
module.forward(t)
|