mirror of https://github.com/llvm/torch-mlir
19 lines
735 B
Python
19 lines
735 B
Python
|
# RUN: %PYTHON %s | npcomp-opt -split-input-file | FileCheck %s --dump-input=fail
|
||
|
|
||
|
import numpy as np
|
||
|
from npcomp.compiler import test_config
|
||
|
|
||
|
import_global = test_config.create_import_dump_decorator()
|
||
|
|
||
|
global_data = (np.zeros((2, 3)) + [1.0, 2.0, 3.0] * np.reshape([1.0, 2.0],
|
||
|
(2, 1)))
|
||
|
|
||
|
|
||
|
# CHECK-LABEL: func @global_array_to_const
|
||
|
@import_global
|
||
|
def global_array_to_const():
|
||
|
# CHECK: %[[CST:.*]] = constant dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [2.000000e+00, 4.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
|
||
|
# CHECK: numpy.create_array_from_tensor %[[CST]] : (tensor<2x3xf64>) -> !numpy.ndarray<f64>
|
||
|
local_data = global_data
|
||
|
return local_data
|