2020-11-05 08:54:52 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "npcomp/Conversion/ATenToTCF/Patterns.h"
|
|
|
|
|
|
|
|
#include "mlir/IR/MLIRContext.h"
|
|
|
|
#include "mlir/IR/Matchers.h"
|
|
|
|
#include "mlir/IR/PatternMatch.h"
|
|
|
|
#include "npcomp/Dialect/ATen/IR/ATenDialect.h"
|
2021-03-13 09:21:16 +08:00
|
|
|
#include "npcomp/Dialect/Basicpy/IR/BasicpyOps.h"
|
2020-11-05 08:54:52 +08:00
|
|
|
#include "npcomp/Dialect/TCF/IR/TCFOps.h"
|
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
using namespace mlir::NPCOMP;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// The ATen AddOp actually has three arguments:
|
|
|
|
/// self, other, alpha
|
|
|
|
/// Alpha is an integer that is multiplied by 'other' prior to adding.
|
|
|
|
class ConvertATenAdd : public OpRewritePattern<aten::AddOp> {
|
|
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(aten::AddOp srcAddOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
// Special case: Match when alpha is constant 1, which is the default,
|
|
|
|
// quite common and maps directly to a TCF add. Note that regardless of
|
|
|
|
// the type of self/other (i.e. if they are float), alpha emits as an
|
|
|
|
// integer with value 1 when defaulted. It is this specific case that we
|
|
|
|
// are detecting (default value) and will leave all others to the fully
|
|
|
|
// generic conversion.
|
|
|
|
APInt alphaValue;
|
|
|
|
if (matchPattern(srcAddOp.alpha(), m_ConstantInt(&alphaValue)) &&
|
|
|
|
alphaValue.getZExtValue() == 1) {
|
|
|
|
rewriter.replaceOpWithNewOp<tcf::AddOp>(
|
|
|
|
srcAddOp, srcAddOp.getResult().getType(), srcAddOp.self(),
|
|
|
|
srcAddOp.other());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcAddOp, "aten.add to tcf.add currently only supports alpha == 1");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2021-03-31 04:19:43 +08:00
|
|
|
/// Common conversion template for unary ops that map 1:1.
|
|
|
|
template <typename SourceOp, typename TargetOp>
|
|
|
|
class ConvertUnary : public OpRewritePattern<SourceOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<SourceOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SourceOp srcOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto operands = srcOp.getOperation()->getOperands();
|
|
|
|
auto results = srcOp.getOperation()->getResults();
|
|
|
|
assert(operands.size() == 1 && "expected unary op");
|
|
|
|
assert(results.size() == 1 && "expected single result op");
|
|
|
|
Type resultType = results[0].getType();
|
|
|
|
rewriter.replaceOpWithNewOp<TargetOp>(srcOp, resultType,
|
|
|
|
srcOp->getOperand(0));
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-11-05 08:54:52 +08:00
|
|
|
/// Common conversion template for true binary elementwise ops.
|
|
|
|
/// This does not apply to the handful of not-actually-binary PyTorch ops that
|
|
|
|
/// have broadcastable self/other operands but may have additional parameters.
|
|
|
|
template <typename SourceOp, typename TargetOp>
|
|
|
|
class ConvertBinaryElementwise : public OpRewritePattern<SourceOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<SourceOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SourceOp srcOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto operands = srcOp.getOperation()->getOperands();
|
|
|
|
auto results = srcOp.getOperation()->getResults();
|
|
|
|
assert(operands.size() == 2 && "expected true binary op");
|
|
|
|
assert(results.size() == 1 && "expected single result op");
|
|
|
|
Type resultType = results[0].getType();
|
|
|
|
rewriter.replaceOpWithNewOp<TargetOp>(
|
|
|
|
srcOp, resultType, srcOp.getOperand(0), srcOp.getOperand(1));
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2021-03-13 09:21:16 +08:00
|
|
|
/// The ATen Conv2dOp has seven arguments:
|
|
|
|
/// input, weight, bias, stride, padding, dilation, groups
|
|
|
|
|
|
|
|
class ConvertATenConv2d : public OpRewritePattern<aten::Conv2dOp> {
|
|
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(aten::Conv2dOp srcConv2dOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto results = srcConv2dOp.getOperation()->getResults();
|
|
|
|
assert(srcConv2dOp.getNumOperands() == 7 && "expected seven (7) operands");
|
|
|
|
assert(results.size() == 1 && "expected single result op");
|
|
|
|
// TODO: Replace constant int-list constraints for stride, padding, and dilation; and, constant int constraint for groups.
|
|
|
|
auto strideOp = srcConv2dOp.stride().getDefiningOp<Basicpy::BuildListOp>();
|
|
|
|
if (!strideOp) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "expected basicpy.build_list to drive stride input");
|
|
|
|
}
|
|
|
|
if (strideOp.getNumOperands() != 2) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "expected stride length of 2");
|
|
|
|
}
|
|
|
|
auto *strideOperand0Op = strideOp.getOperand(0).getDefiningOp();
|
|
|
|
auto *strideOperand1Op = strideOp.getOperand(1).getDefiningOp();
|
|
|
|
if (!matchPattern(strideOperand0Op, m_One())
|
|
|
|
|| !matchPattern(strideOperand1Op, m_One())
|
|
|
|
) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "aten.conv2d to tcf.conv_2d_nchw currently only supports stride == [1, 1]");
|
|
|
|
}
|
|
|
|
auto paddingOp = srcConv2dOp.padding().getDefiningOp<Basicpy::BuildListOp>();
|
|
|
|
if (!paddingOp) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "expected basicpy.build_list to drive padding input");
|
|
|
|
}
|
|
|
|
if (paddingOp.getNumOperands() != 2) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "expected padding length of 2");
|
|
|
|
}
|
|
|
|
auto *paddingOperand0Op = paddingOp.getOperand(0).getDefiningOp();
|
|
|
|
auto *paddingOperand1Op = paddingOp.getOperand(1).getDefiningOp();
|
|
|
|
if (!matchPattern(paddingOperand0Op, m_Zero())
|
|
|
|
|| !matchPattern(paddingOperand1Op, m_Zero())
|
|
|
|
) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "aten.conv2d to tcf.conv_2d_nchw currently only supports padding == [0, 0]");
|
|
|
|
}
|
|
|
|
auto dilationOp = srcConv2dOp.dilation().getDefiningOp<Basicpy::BuildListOp>();
|
|
|
|
if (!dilationOp) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "expected basicpy.build_list to drive dilation input");
|
|
|
|
}
|
|
|
|
if (dilationOp.getNumOperands() != 2) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "expected dilation length of 2");
|
|
|
|
}
|
|
|
|
auto *dilationOperand0Op = dilationOp.getOperand(0).getDefiningOp();
|
|
|
|
auto *dilationOperand1Op = dilationOp.getOperand(1).getDefiningOp();
|
|
|
|
if (!matchPattern(dilationOperand0Op, m_One())
|
|
|
|
|| !matchPattern(dilationOperand1Op, m_One())
|
|
|
|
) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "aten.conv2d to tcf.conv_2d_nchw currently only supports dilation == [1, 1]");
|
|
|
|
}
|
|
|
|
if (!matchPattern(srcConv2dOp.groups(), m_One())
|
|
|
|
) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
srcConv2dOp, "aten.conv2d to tcf.conv_2d_nchw currently only supports groups == 1");
|
|
|
|
}
|
|
|
|
auto tcfConvNCHWOp = rewriter.create<tcf::ConvNCHWOp>(
|
|
|
|
srcConv2dOp.getLoc(), srcConv2dOp.getResult().getType(), srcConv2dOp.input(),
|
|
|
|
srcConv2dOp.weight());
|
|
|
|
// TODO: Reference Torch Conv2D's bias flag to conditionally create TCF Add.
|
|
|
|
// (see https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d)
|
|
|
|
auto tcfConvNCHWBiasOp = rewriter.create<tcf::AddOp>(
|
|
|
|
srcConv2dOp.getLoc(), srcConv2dOp.getResult().getType(), tcfConvNCHWOp.getResult(),
|
|
|
|
srcConv2dOp.bias());
|
|
|
|
rewriter.replaceOp(srcConv2dOp, tcfConvNCHWBiasOp.getResult());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-11-05 08:54:52 +08:00
|
|
|
} // namespace
|
|
|
|
|
2021-03-24 05:16:23 +08:00
|
|
|
void mlir::NPCOMP::populateCoreATenToTCFPatterns(RewritePatternSet &patterns) {
|
|
|
|
MLIRContext *context = patterns.getContext();
|
|
|
|
patterns.add<ConvertATenAdd>(context);
|
2021-03-31 04:19:43 +08:00
|
|
|
patterns.add<ConvertUnary<aten::TanhOp, tcf::TanhOp>>(context);
|
2021-03-24 05:16:23 +08:00
|
|
|
patterns.add<ConvertBinaryElementwise<aten::MulOp, tcf::MulOp>>(context);
|
|
|
|
patterns.add<ConvertBinaryElementwise<aten::MaximumOp, tcf::MaxOp>>(context);
|
|
|
|
patterns.add<ConvertBinaryElementwise<aten::MmOp, tcf::MatmulOp>>(context);
|
|
|
|
patterns.add<ConvertATenConv2d>(context);
|
2020-11-05 08:54:52 +08:00
|
|
|
}
|