mirror of https://github.com/llvm/torch-mlir
19 lines
554 B
Python
19 lines
554 B
Python
|
# Run full pipeline with:
|
||
|
# -npcomp-cpa-type-inference -numpy-public-functions-to-tensor -convert-numpy-to-tcf -canonicalize
|
||
|
|
||
|
import numpy as np
|
||
|
from npcomp.compiler import test_config
|
||
|
|
||
|
import_global = test_config.create_import_dump_decorator()
|
||
|
|
||
|
global_data = (np.zeros((2, 3)) + [1.0, 2.0, 3.0] * np.reshape([1.0, 2.0],
|
||
|
(2, 1)))
|
||
|
|
||
|
a = np.asarray([1.0, 2.0], dtype=np.float32)
|
||
|
b = np.asarray([3.0, 4.0], dtype=np.float32)
|
||
|
|
||
|
|
||
|
@import_global
|
||
|
def global_add():
|
||
|
return np.add(a, np.add(b, a))
|