mirror of https://github.com/llvm/torch-mlir
39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
|
# RUN: %PYTHON %s | FileCheck %s --dump-input=fail
|
||
|
|
||
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
|
||
|
import numpy as np
|
||
|
import npcomp as npc
|
||
|
from npcomp.types import *
|
||
|
|
||
|
|
||
|
def dot2d(a: np.ndarray, b: np.ndarray) -> np.ndarray:
|
||
|
return np.dot(a, b)
|
||
|
|
||
|
|
||
|
# TODO: Implement subclassing and deriving constraints by run
|
||
|
exp = npc.Exporter()
|
||
|
exp.dot2d = dot2d
|
||
|
exp.dot2d.sig.args["a"] += Shape(4, 16)
|
||
|
exp.dot2d.sig.args["a"] += DynamicDim(0)
|
||
|
exp.dot2d.sig.args["a"] += DType(np.float32)
|
||
|
exp.dot2d.sig.args["b"] += Shape(16, 32)
|
||
|
exp.dot2d.sig.args["b"] += DType(np.float32)
|
||
|
exp.dot2d.sig.result += Shape(4, 32)
|
||
|
exp.dot2d.sig.result += DynamicDim(0)
|
||
|
exp.dot2d.sig.result += DType(np.float32)
|
||
|
|
||
|
mb = npc.tracing.ModuleBuilder()
|
||
|
mb.trace(exp.dot2d)
|
||
|
|
||
|
# CHECK-LABEL: func @dot2d(
|
||
|
# CHECK-SAME: %[[VAL_0:.*]]: tensor<?x16xf32>,
|
||
|
# CHECK-SAME: %[[VAL_1:.*]]: tensor<16x32xf32>) -> tensor<?x32xf32> {
|
||
|
# CHECK: %[[VAL_2:.*]] = numpy.dot %[[VAL_0]], %[[VAL_1]] : (tensor<?x16xf32>, tensor<16x32xf32>) -> tensor<*x!basicpy.UnknownType>
|
||
|
# CHECK: %[[VAL_3:.*]] = numpy.narrow %[[VAL_2]] : (tensor<*x!basicpy.UnknownType>) -> tensor<?x32xf32>
|
||
|
# CHECK: return %[[VAL_3]] : tensor<?x32xf32>
|
||
|
# CHECK: }
|
||
|
print(mb.module)
|