torch-mlir/lib/Dialect/Torch/Transforms/SimplifyAbstractInterpCalcu...

352 lines
14 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "SimplifyAbstractInterpCalculationsUtils.h"
#include "mlir/IR/IRMapping.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
class FoldPrimUncheckedCastOp : public OpRewritePattern<PrimUncheckedCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimUncheckedCastOp op,
PatternRewriter &rewriter) const override {
if (!isValidSubtype(op.getX().getType(), op.getResult().getType())) {
return rewriter.notifyMatchFailure(
op, "input tensor type is not a valid subtype of result type");
}
rewriter.replaceOp(op, op.getX());
return success();
}
};
} // namespace
namespace {
// TODO: Only unroll inside the shape calculation region.
// Maybe do this by only applying patterns and folding greedily on the ops
// inside the region + the shape.calculate op itself?
class FullyUnrollPrimLoopOp : public OpRewritePattern<PrimLoopOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimLoopOp op,
PatternRewriter &rewriter) const override {
Location loc = op->getLoc();
MLIRContext *context = op->getContext();
if (!op.isForLike())
return rewriter.notifyMatchFailure(op, "Loop is not for-like");
int64_t maxTripCount;
if (!matchPattern(op.getMaxTripCount(), m_TorchConstantInt(&maxTripCount)))
return rewriter.notifyMatchFailure(
op, "Expected `maxTripCount` to be a constant int");
;
SmallVector<Value> indices;
for (int64_t i = 0; i < maxTripCount; i++) {
// TODO: Add convenience builder.
indices.push_back(rewriter.create<ConstantIntOp>(
loc, rewriter.getIntegerAttr(IntegerType::get(context, 64), i)));
}
Block *beforeBlock = op->getBlock();
Block *afterBlock = rewriter.splitBlock(op->getBlock(), op->getIterator());
SmallVector<Block *> blocksToMerge;
IRMapping bvm;
// TODO: Helper for region().front()
auto condition =
cast<PrimLoopConditionOp>(op.getRegion().front().getTerminator());
for (int64_t i = 0; i < maxTripCount; i++) {
SmallVector<Value> iterArgs;
if (i == 0) {
llvm::append_range(iterArgs, op.getIterArgsInit());
} else {
llvm::append_range(
iterArgs, llvm::map_range(condition.getIterArgs(),
[&](Value v) { return bvm.lookup(v); }));
}
bvm.clear();
bvm.map(op.getRegion().front().getArgument(0), indices[i]);
bvm.map(op.getRegion().front().getArguments().slice(1), iterArgs);
op.getRegion().cloneInto(afterBlock->getParent(),
afterBlock->getIterator(), bvm);
Block *clonedBlock = bvm.lookup(&op.getRegion().front());
rewriter.eraseOp(clonedBlock->getTerminator());
blocksToMerge.push_back(clonedBlock);
}
blocksToMerge.push_back(afterBlock);
for (Block *block : blocksToMerge)
rewriter.mergeBlocks(block, beforeBlock);
if (maxTripCount == 0) {
rewriter.replaceOp(op, op.getIterArgsInit());
} else {
rewriter.replaceOp(op, llvm::to_vector<6>(llvm::map_range(
condition.getIterArgs(),
[&](Value v) { return bvm.lookup(v); })));
}
return success();
}
};
} // namespace
namespace {
class AbstractlyInterpretListOpsWithinABlock
: public OpRewritePattern<PrimListConstructOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimListConstructOp op,
PatternRewriter &rewriter) const override {
Block *block = op->getBlock();
auto allUsers = llvm::to_vector<6>(op->getUsers());
// Sort the users into program order.
auto getParentInBlock = [&](Operation *op) {
while (op->getBlock() != block)
op = op->getParentOp();
return op;
};
// Use a stable sort for deterministic results when users are nested in two
// regions of the same parent op.
llvm::stable_sort(allUsers, [&](Operation *lhs, Operation *rhs) {
return getParentInBlock(lhs)->isBeforeInBlock(getParentInBlock(rhs));
});
// We cannot interpret all ops. So first do a check to see up until which
// point we can interpret.
int numUsersToInterpret = 0;
for (int i = 0, e = allUsers.size(); i != e; i++, numUsersToInterpret++) {
Operation *user = allUsers[i];
// If a user potentially mutates the list, then we require it to be in the
// same block for our simple abstract interpretation to work (we can't,
// for example, handle an "append" operation in a loop or other region).
// However, if the op is read-only, then from the purpose of our abstract
// interpretation, we can handle it effectively as though it was at the
// same position as the corresponding parent op in the block under
// consideration.
if (potentiallyMutatesListOperands(user)) {
if (user->getBlock() != block)
break;
}
}
// Truncate the list of users to the number of users we're going to
// interpret.
allUsers.resize(numUsersToInterpret);
auto usersToInterpret = ArrayRef(allUsers).take_front(numUsersToInterpret);
// For each mutating op (which must be in the same block), we save the
// current state of the list as a vector of Value's. These will then
// be converted to PrimListConstructOp's at the correct program points.
SmallVector<SmallVector<Value>> listLiterals;
SmallVector<Value> runningList;
llvm::append_range(runningList, op->getOperands());
bool generatedNewLiteral = false;
for (Operation *user : usersToInterpret) {
if (auto append = dyn_cast<AtenAppendTOp>(user)) {
if (!append.use_empty())
return rewriter.notifyMatchFailure(
op, "Expected `AtenAppendTOp` to not have users");
if (append.getSelf() == op) {
runningList.push_back(append.getEl());
generatedNewLiteral = true;
}
listLiterals.push_back(runningList);
continue;
}
if (auto insert = dyn_cast<AtenInsertTOp>(user)) {
if (!insert.use_empty())
return rewriter.notifyMatchFailure(
op, "Expected `AtenInsertTOp` to not have users");
int64_t index;
if (!matchPattern(insert.getIdx(), m_TorchConstantInt(&index)))
return rewriter.notifyMatchFailure(
op, "Expected `idx` of `AtenInsertTOp` to be a constant int");
// The index might be statically out of bounds.
if (index < 0 || index > static_cast<int64_t>(runningList.size()))
return rewriter.notifyMatchFailure(
op, "Index in `AtenInsertTOp` is out of bounds");
if (insert.getSelf() == op) {
runningList.insert(runningList.begin() + index, insert.getEl());
generatedNewLiteral = true;
}
listLiterals.push_back(runningList);
continue;
}
if (auto setItem = dyn_cast<Aten_SetItemTOp>(user)) {
if (!setItem.use_empty())
return rewriter.notifyMatchFailure(
op, "Expected `Aten_SetItemTOp` to not have users");
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
setItem.getIdx(), runningList.size());
// The index might be statically out of bounds.
if (!indexOpt)
return rewriter.notifyMatchFailure(
op, "Index in `Aten_SetItemTOp` is out of bounds");
if (setItem.getL() == op) {
runningList[*indexOpt] = setItem.getEl();
generatedNewLiteral = true;
}
listLiterals.push_back(runningList);
continue;
}
// If this user potentially mutates the list and isn't handled above, then
// we can't abstractly interpret any further.
if (potentiallyMutatesListOperands(user))
break;
}
if (!generatedNewLiteral)
return rewriter.notifyMatchFailure(op, "No new literal created");
// Rewrite all users to use the appropriate list literals.
Value latestLiteral = rewriter.create<PrimListConstructOp>(
op->getLoc(), op.getType(), op->getOperands());
int nextLiteral = 0;
for (Operation *user : usersToInterpret) {
if (auto append = dyn_cast<AtenAppendTOp>(user)) {
rewriter.setInsertionPoint(append);
latestLiteral = rewriter.create<PrimListConstructOp>(
append->getLoc(), op.getType(), listLiterals[nextLiteral++]);
if (append.getSelf() == op)
rewriter.eraseOp(append);
continue;
}
if (auto insert = dyn_cast<AtenInsertTOp>(user)) {
rewriter.setInsertionPoint(insert);
latestLiteral = rewriter.create<PrimListConstructOp>(
insert->getLoc(), op.getType(), listLiterals[nextLiteral++]);
if (insert.getSelf() == op)
rewriter.eraseOp(insert);
continue;
}
if (auto setItem = dyn_cast<Aten_SetItemTOp>(user)) {
rewriter.setInsertionPoint(setItem);
latestLiteral = rewriter.create<PrimListConstructOp>(
setItem->getLoc(), op.getType(), listLiterals[nextLiteral++]);
if (setItem.getL() == op)
rewriter.eraseOp(setItem);
continue;
}
for (OpOperand &opOperand : user->getOpOperands()) {
if (opOperand.get() == op.getResult()) {
opOperand.set(latestLiteral);
}
}
}
// Any remaining uses should use the updated value of the latest literal.
rewriter.replaceOp(op, latestLiteral);
return success();
}
};
} // namespace
LogicalResult Torch::updateCalculateOpResultTypes(Operation *calculateOp,
int resultNum,
Type newResultType,
PatternRewriter &rewriter) {
Location loc = calculateOp->getLoc();
auto result = calculateOp->getResult(resultNum);
Type originalResultType = result.getType();
Type updatedType;
if (auto originalBaseTensorType =
originalResultType.template dyn_cast<BaseTensorType>()) {
// If we didn't get any new information, there is nothing left for us to do.
updatedType = meetTensorTypes(originalBaseTensorType,
newResultType.cast<BaseTensorType>());
if (!updatedType || updatedType == originalBaseTensorType)
return rewriter.notifyMatchFailure(
calculateOp, "New type information does not refine old type");
} else if (auto originalResultType =
result.getType().template dyn_cast<Torch::NumberType>()) {
if (!newResultType.isa<Torch::FloatType, Torch::IntType>()) {
return rewriter.notifyMatchFailure(
calculateOp,
"Refinement of `NumberType` must be a `FloatType` or `IntType`");
}
updatedType = newResultType;
} else {
return rewriter.notifyMatchFailure(calculateOp,
"Unimplemented: Expected result type to "
"be `BaseTensorType` or `NumberType`");
}
// Update all the uses of the result type to the new type, if possible. Insert
// a TensorStaticInfoCastOp for any users that might require the exact
// previous type.
Value originalTypedValue;
for (OpOperand &use : llvm::make_early_inc_range(result.getUses())) {
if (use.getOwner()
->hasTrait<mlir::torch::Torch::OpTrait::AllowsTypeRefinement>()) {
continue;
}
if (!originalTypedValue) {
rewriter.setInsertionPointAfter(calculateOp);
if (originalResultType.isa<BaseTensorType>()) {
originalTypedValue = rewriter.create<TensorStaticInfoCastOp>(
loc, originalResultType, result);
} else if (originalResultType.isa<Torch::NumberType>()) {
originalTypedValue =
rewriter.create<DerefineOp>(loc, originalResultType, result);
} else {
return rewriter.notifyMatchFailure(
calculateOp, "Unimplemented: Expected result type to "
"be `BaseTensorType` or `NumberType`");
}
}
use.set(originalTypedValue);
}
result.setType(updatedType);
// Update the value yielded from the body to match the new result type. If we
// can refine the def in place, do that, otherwise insert a
// TensorStaticInfoCastOp.
Operation *yieldValues = calculateOp->getRegion(0).front().getTerminator();
OpOperand &use = yieldValues->getOpOperand(resultNum);
Value def = use.get();
Value newYieldedValue;
if (def.isa<OpResult>() &&
def.cast<OpResult>()
.getDefiningOp()
->hasTrait<mlir::torch::Torch::OpTrait::AllowsTypeRefinement>()) {
newYieldedValue = def;
} else {
rewriter.setInsertionPoint(yieldValues);
if (updatedType.isa<BaseTensorType>()) {
newYieldedValue =
rewriter.create<TensorStaticInfoCastOp>(loc, updatedType, def);
} else {
newYieldedValue =
rewriter.create<PrimUncheckedCastOp>(loc, updatedType, def);
}
}
use.set(newYieldedValue);
newYieldedValue.setType(updatedType);
return success();
}
void mlir::torch::Torch::populateFoldPrimUncheckedCastOpPattern(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.insert<FoldPrimUncheckedCastOp>(context);
}
void mlir::torch::Torch::populateFullyUnrollPrimLoopOpPattern(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.insert<FullyUnrollPrimLoopOp>(context);
}
void mlir::torch::Torch::populateAbstractlyInterpretListOpsWithinABlockPattern(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.insert<AbstractlyInterpretListOpsWithinABlock>(context);
}