torch-mlir/lib/Dialect/ATen/ATenDialectOpStats.cpp

827 lines
26 KiB
C++
Raw Normal View History

//===- ATenDialectOpStats.cpp -----------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "npcomp/Dialect/ATen/ATenDialect.h"
#include "npcomp/Dialect/ATen/ATenOpStatisticsUtils.h"
#include "llvm/Support/Debug.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include <iostream>
#define DEBUG_TYPE "aten-op-stats"
// This file contains the StatisticsOpInterface implementations
// for ATDialect operations
using namespace mlir;
namespace {
std::vector<uint64_t> unpackListConstant(Value op) {
std::vector<uint64_t> v;
auto co = cast<mlir::NPCOMP::aten::ConstantOp>(op.getDefiningOp());
DenseElementsAttr a = co.template getAttrOfType<DenseElementsAttr>("value");
for (auto i : a.getIntValues())
v.push_back(i.getSExtValue());
return v;
};
} // namespace
namespace mlir {
namespace NPCOMP {
namespace aten {
std::map<std::string, uint64_t> AdaptiveAvgPool2dOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
toReturn["reads"] = -1;
toReturn["writes"] = -1;
return toReturn;
}
std::map<std::string, uint64_t> AdaptiveAvgPool2dBackwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
toReturn["reads"] = -1;
toReturn["writes"] = -1;
return toReturn;
}
// add
std::map<std::string, uint64_t> AddOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:+"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// add_
std::map<std::string, uint64_t> AddUnderOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:+"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// addmm
std::map<std::string, uint64_t> AddmmOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// For linear, we need the number of output neurons and the number of input
// neurons Then the number of forward MACs is input * output And the number of
// adds is output if there is bias
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType biasTy = getOperand(0).getType().cast<TensorType>();
TensorType inputTy = getOperand(1).getType().cast<TensorType>();
TensorType weightTy = getOperand(2).getType().cast<TensorType>();
uint64_t num_output_neurons = resultTy.getShape()[1];
uint64_t ofm_volume = getTensorVolume(resultTy);
// Use the weight tensor to find the number of input neurons
uint64_t num_input_neurons = weightTy.getShape()[0];
uint64_t total_MACs = ofm_volume * num_input_neurons;
uint64_t weight_volume = getTensorVolume(weightTy);
uint64_t ifm_volume = getTensorVolume(inputTy);
toReturn["ops:MAC"] = total_MACs;
toReturn["ops:+"] =
ofm_volume; // Should be gated on whether there is bias at all
toReturn["operand:1:activation_in"] = ifm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
toReturn["operand:0:parameters_in:bias"] = getTensorVolume(biasTy);
toReturn["operand:2:parameters_in:weight"] = weight_volume;
toReturn["reads"] = ifm_volume + weight_volume + num_output_neurons;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// as_strided can be zero overhead
std::map<std::string, uint64_t> AsStridedOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = 0;
toReturn["writes"] = 0;
toReturn["operand:0:activation_in"] = 0;
toReturn["result:0:activation_out"] = 0;
return toReturn;
}
// batch_norm
std::map<std::string, uint64_t> BatchNormOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult(0).getType().cast<TensorType>();
uint64_t op_volume = getTensorVolume(resultTy);
uint64_t weight_volume = getTensorVolume(getOperand(1).getType());
uint64_t bias_volume = getTensorVolume(getOperand(2).getType());
toReturn["operand:0:activation_in"] = op_volume;
toReturn["result:0:activation_out"] = op_volume;
toReturn["operand:1:parameters_in:weight"] = weight_volume;
toReturn["operand:2:parameters_in:bias"] = bias_volume;
// Now for the arithmetic. Assume variance is calculated as sum of squares
uint64_t ifm_depth = resultTy.getShape()[1];
toReturn["ops:+"] = op_volume; // Add up for mean
toReturn["ops:*"] = op_volume; // Square for variance
toReturn["ops:+"] += op_volume; // Add up squares for variance
toReturn["ops:*"] += ifm_depth; // Calc channel means
toReturn["ops:-"] += ifm_depth; // Calc channel vars
toReturn["ops:*"] += ifm_depth; // Calc channel vars
toReturn["ops:sqrt"] = ifm_depth; // Convert to SD
toReturn["ops:/"] = ifm_depth; // Get the reciprocal
toReturn["ops:+"] += op_volume; // Subtract mean off each pixel
toReturn["ops:*"] += op_volume; // Multiply by 1/SD for each pixel
toReturn["ops:+"] += op_volume; // Bias
toReturn["ops:*"] += op_volume; // Scale
toReturn["reads"] = op_volume + weight_volume + bias_volume;
toReturn["writes"] = op_volume;
return toReturn;
}
// _convolution
std::map<std::string, uint64_t> ConvolutionOp::getStatistics() {
return getConv2dStatistics(this, /*groups*/ 1);
}
std::map<std::string, uint64_t> ConvolutionOverrideableOp::getStatistics() {
// FIXME
auto co = cast<mlir::NPCOMP::aten::ConstantOp>(groups().getDefiningOp());
auto ia = co.template getAttrOfType<IntegerAttr>("value");
uint64_t groups = ia.getValue().getZExtValue();
return getConv2dStatistics(this, groups);
}
uint64_t ConvolutionOp::getOperandTransferVolume(unsigned int idx, bool read) {
return getConv2dOperandTransferVolume<ConvolutionOp>(this, idx, read);
}
uint64_t ConvolutionOp::getResultTransferVolume(unsigned int idx, bool write) {
return getConv2dResultTransferVolume<ConvolutionOp>(this, idx, write);
}
// _convolution_backward
std::map<std::string, uint64_t> ConvolutionBackwardOp::getStatistics() {
return getConv2dBackwardStatistics(*this, 1);
}
std::map<std::string, uint64_t> ConvolutionBackwardOverrideableOp::getStatistics() {
auto co = cast<mlir::NPCOMP::aten::ConstantOp>(groups().getDefiningOp());
auto ia = co.template getAttrOfType<IntegerAttr>("value");
uint64_t groups = ia.getValue().getZExtValue();
return getConv2dBackwardStatistics(*this, groups);
}
// div
std::map<std::string, uint64_t> DivOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:/"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// div_
std::map<std::string, uint64_t> DivUnderOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:/"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// expand can be zero overhead
std::map<std::string, uint64_t> ExpandOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = toReturn["operand:0:activation_in"] = 0;
toReturn["writes"] = toReturn["result:0:activation_out"] = 0;
return toReturn;
}
// flatten can be zero overhead
std::map<std::string, uint64_t> FlattenOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = toReturn["operand:0:activation_in"] = 0;
toReturn["writes"] = toReturn["result:0:activation_out"] = 0;
return toReturn;
}
std::map<std::string, uint64_t> GatherOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
toReturn["reads"] = -1;
toReturn["writes"] = -1;
return toReturn;
}
// hardtanh
std::map<std::string, uint64_t> HardtanhOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType inputTy = getOperand(0).getType().cast<TensorType>();
TensorType resultTy = getResult().getType().cast<TensorType>();
uint64_t in_volume = getTensorVolume(inputTy);
uint64_t out_volume = getTensorVolume(resultTy);
toReturn["operand:0:activation_in"] = in_volume;
toReturn["result:0:activation_out"] = out_volume;
toReturn["reads"] = in_volume;
toReturn["writes"] = out_volume;
toReturn["ops:>"] = out_volume;
return toReturn;
}
// hardtanh_
std::map<std::string, uint64_t> HardtanhUnderOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType inputTy = getOperand(0).getType().cast<TensorType>();
TensorType resultTy = getResult().getType().cast<TensorType>();
uint64_t in_volume = getTensorVolume(inputTy);
uint64_t out_volume = getTensorVolume(resultTy);
toReturn["operand:0:activation_in"] = in_volume;
toReturn["result:0:activation_out"] = out_volume;
toReturn["reads"] = in_volume;
toReturn["writes"] = out_volume;
toReturn["ops:>"] = out_volume;
return toReturn;
}
std::map<std::string, uint64_t> HardtanhBackwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
return toReturn;
}
// max_pool2d
std::map<std::string, uint64_t> MaxPool2dOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType inputType = getOperand(0).getType().cast<TensorType>();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["result:0:activation_out"] = ofm_volume;
uint64_t ifm_volume = getTensorVolume(inputType);
toReturn["input:0:activation_in"] = ifm_volume;
// To find the number of compares, we need the filter extent
std::vector<uint64_t> kernel_size = unpackListConstant(getOperand(1));
uint64_t aperture = kernel_size[0] * kernel_size[1];
toReturn["ops:>"] = ofm_volume * (aperture - 1);
toReturn["reads"] = ifm_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// max_pool2d_with_indices
std::map<std::string, uint64_t> MaxPool2dWithIndicesOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
uint64_t ofm_volume =
getTensorVolume(getResult(0).getType().cast<TensorType>());
uint64_t indices_volume =
getTensorVolume(getResult(1).getType().cast<TensorType>());
toReturn["writes"] = ofm_volume + indices_volume;
toReturn["result:0:activation_out"] = ofm_volume;
toReturn["result:1:indices_out"] = indices_volume;
uint64_t ifm_volume =
getTensorVolume(getOperand(0).getType().cast<TensorType>());
toReturn["reads"] = ifm_volume;
toReturn["operand:0:activation_in"] = ifm_volume;
// To find the number of compares, we need the filter extent
std::vector<uint64_t> kernel_size = unpackListConstant(getOperand(1));
uint64_t aperture = kernel_size[0] * kernel_size[1];
toReturn["ops:>"] = ofm_volume * (aperture - 1);
return toReturn;
}
// max_pool2d_with_indices_backward
std::map<std::string, uint64_t>
MaxPool2dWithIndicesBackwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
Type resultTy = getResult().getType();
TensorType tensorResultTy = resultTy.cast<TensorType>();
uint64_t loss_out_volume = getTensorVolume(tensorResultTy);
toReturn["writes"] = loss_out_volume;
uint64_t loss_in_volume =
getTensorVolume(getOperand(0).getType().cast<TensorType>());
uint64_t act_in_volume = getTensorVolume(
getOperand(1).getType().cast<TensorType>()); // TODO: Why is this needed?
uint64_t indices_volume =
getTensorVolume(getOperand(7).getType().cast<TensorType>());
toReturn["reads"] = loss_in_volume + act_in_volume + indices_volume;
toReturn["operand:0:activation_in"] = loss_in_volume;
toReturn["operand:1:activation_in"] = act_in_volume;
toReturn["operand:3:activation_in"] = indices_volume;
toReturn["result:0:grad:dx"] = loss_out_volume;
return toReturn;
}
// mean
std::map<std::string, uint64_t> MeanOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand().getType().cast<TensorType>();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:+"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["reads"] = a_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// mm
// std::map<std::string, uint64_t> MMOp::getStatistics() {
// getMMOpStatistics(*this);
// }
std::map<std::string, uint64_t> MmOp::getStatistics() {
return getMMOpStatistics(*this );
}
// mul
std::map<std::string, uint64_t> MulOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:*"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// mul_
std::map<std::string, uint64_t> MulUnderOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:*"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// native_batch_norm
std::map<std::string, uint64_t> NativeBatchNormOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult(0).getType().cast<TensorType>();
uint64_t op_volume = getTensorVolume(resultTy);
uint64_t weight_volume = getTensorVolume(getOperand(1).getType());
uint64_t bias_volume = getTensorVolume(getOperand(2).getType());
toReturn["operand:0:activation_in"] = op_volume;
toReturn["result:0:activation_out"] = op_volume;
toReturn["operand:1:parameters_in:weight"] = weight_volume;
toReturn["operand:2:parameters_in:bias"] = bias_volume;
// Now for the arithmetic. Assume variance is calculated as sum of squares
uint64_t ifm_depth = resultTy.getShape()[1];
toReturn["ops:+"] = op_volume; // Add up for mean
toReturn["ops:*"] = op_volume; // Square for variance
toReturn["ops:+"] += op_volume; // Add up squares for variance
toReturn["ops:*"] += ifm_depth; // Calc channel means
toReturn["ops:-"] += ifm_depth; // Calc channel vars
toReturn["ops:*"] += ifm_depth; // Calc channel vars
toReturn["ops:sqrt"] = ifm_depth; // Convert to SD
toReturn["ops:/"] = ifm_depth; // Get the reciprocal
toReturn["ops:+"] += op_volume; // Subtract mean off each pixel
toReturn["ops:*"] += op_volume; // Multiply by 1/SD for each pixel
toReturn["ops:+"] += op_volume; // Bias
toReturn["ops:*"] += op_volume; // Scale
toReturn["reads"] = op_volume + weight_volume + bias_volume;
toReturn["writes"] = op_volume;
return toReturn;
}
// batchnorm backward
std::map<std::string, uint64_t> NativeBatchNormBackwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
ShapedType inputTy = getOperand(0).getType().cast<ShapedType>();
uint64_t input_volume = getTensorVolume(inputTy);
uint64_t input_channels = inputTy.getShape()[1];
// # 3 components make up the gradInput: 1 gradInput, 2 gradMean, 3 gradVar
// # totalGradInput = gradInput + (dL / dMean * dMean / dInput) +
// # (dL / dVar * dVar / dInput)
// # gradInput
// total_ops["backward"]["*"] = in_c * (in_h*in_w*batch_size) # scale
// # Bootstrap from previous
// #total_ops["backward"]["sqrt"] = in_c # Convert to std_dev
// #total_ops["backward"]["/"] = in_c # Calculate inverse sqrt first
toReturn["ops:*"] = input_volume; // scale
// # dL / dGradVar
// total_ops["backward"]["pow"] = in_c
// total_ops["backward"]["*"] = total_ops["backward"]["*"] + in_c
// #total_ops["backward"]["+"] = total_ops["backward"]["+"] + in_c *
// in_h*in_w*batch_size # Subtract mean, bootstrap from previous calculation
// total_ops["backward"]["*"] = total_ops["backward"]["*"] + in_c *
// (in_h*in_w*batch_size)
toReturn["ops:pow"] = input_channels;
;
toReturn["ops:*"] += input_channels;
toReturn["ops:*"] += input_volume;
// # dL / dGradMean
// #total_ops["backward"]["+"] = total_ops["backward"]["+"] + in_c *
// (in_h*in_w*batch_size) # bootstrap from previous total_ops["backward"]["*"]
// = total_ops["backward"]["*"] + in_c # scale gradMean
// total_ops["backward"]["*"] = total_ops["backward"]["*"] + in_c # eltwise
// with dL / dGradVar total_ops["backward"]["+"] = in_c *
// (in_h*in_w*batch_size) # sum gradXhat total_ops["backward"]["*"] =
// total_ops["backward"]["*"] + in_c # scale gradXhat
toReturn["ops:*"] += input_channels; // scale gradMean
toReturn["ops:*"] += input_channels; // eltwise with dL / dGradVar
toReturn["ops:+"] = input_volume; // sum gradXhat
toReturn["ops:*"] += input_channels; // scale gradXhat
// # totalGradInput
// total_ops["backward"]["+"] = total_ops["backward"]["+"] + in_c *
// (in_h*in_w*batch_size) # Subtract mean, can't bootstrap this one
// total_ops["backward"]["*"] = total_ops["backward"]["*"] + in_c # scale dL /
// dMean total_ops["backward"]["*"] = total_ops["backward"]["*"] + in_c #
// scale dL / dVar total_ops["backward"]["*"] = total_ops["backward"]["*"] +
// in_c * (in_h*in_w*batch_size) # Eltwise multiply by dL / dVar
// total_ops["backward"]["+"] = total_ops["backward"]["+"] + 2 * in_c *
// (in_h*in_w*batch_size) # Accumulate gradient terms
toReturn["ops:+"] += input_volume; // Subtract mean, can't bootstrap this one
toReturn["ops:*"] += input_channels; // scale dL / dMean
toReturn["ops:*"] += input_channels; // scale dL / dVar
toReturn["ops:*"] += input_volume; // Eltwise multiply by dL / dVar
toReturn["OPS:+"] += 2 * input_volume; // Accumulate gradient terms
uint64_t reads = 0;
for (int i = 0; i < 7; i++) {
auto v = getTensorVolume(getOperand(i).getType());
toReturn["operand:" + std::to_string(i) + ":activation_in"] = v;
reads += v;
}
uint64_t writes = 0;
for (int i = 0; i < 3; i++) {
auto v = getTensorVolume(getResult(i).getType());
toReturn["result:" + std::to_string(i) + ":grad"] = v;
writes += v;
}
toReturn["reads"] = reads;
toReturn["writes"] = writes;
return toReturn;
}
std::map<std::string, uint64_t> NllLossForwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
toReturn["reads"] = -1;
toReturn["writes"] = -1;
return toReturn;
}
std::map<std::string, uint64_t> NllLossBackwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
toReturn["reads"] = -1;
toReturn["writes"] = -1;
return toReturn;
}
std::map<std::string, uint64_t> NllLoss2dForwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
toReturn["reads"] = -1;
toReturn["writes"] = -1;
return toReturn;
}
std::map<std::string, uint64_t> NllLoss2dBackwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
// FIXME: unimplemented
toReturn["reads"] = -1;
toReturn["writes"] = -1;
return toReturn;
}
// neg op
std::map<std::string, uint64_t> NegOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
auto insize = getTensorVolume(getOperand().getType());
auto outsize = getTensorVolume(getResult().getType());
toReturn["reads"] = toReturn["operand:0:activation_in"] = insize;
toReturn["writes"] = toReturn["result:0:activation_out"] = outsize;
return toReturn;
}
// relu
// std::map<std::string, uint64_t> ReLUOp::getStatistics() {
// return getReLUOpStatistics(*this);
// }
std::map<std::string, uint64_t> ReluOp::getStatistics() {
return getReLUOpStatistics(*this);
}
// std::map<std::string, uint64_t> ReLUUnderOp::getStatistics() {
// return getReLUOpStatistics(*this);
// }
std::map<std::string, uint64_t> ReluUnderOp::getStatistics() {
return getReLUOpStatistics(*this);
}
// sub
std::map<std::string, uint64_t> SubOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:-"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// sub_
std::map<std::string, uint64_t> SubUnderOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType resultTy = getResult().getType().cast<TensorType>();
TensorType aType = getOperand(0).getType().cast<TensorType>();
Type bType = getOperand(1).getType();
uint64_t ofm_volume = getTensorVolume(resultTy);
toReturn["ops:-"] = ofm_volume;
toReturn["result:0:activation_out"] = ofm_volume;
// Find the size of the A and B operands
uint64_t a_volume = getTensorVolume(aType);
uint64_t b_volume = getTensorVolume(bType);
toReturn["operand:0:activation_in"] = a_volume;
toReturn["operand:1:activation_in"] = b_volume;
toReturn["reads"] = a_volume + b_volume;
toReturn["writes"] = ofm_volume;
return toReturn;
}
// sum
std::map<std::string, uint64_t> SumOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
TensorType ty = getOperand(0).getType().cast<TensorType>();
uint64_t volume = getTensorVolume(ty);
toReturn["ops:+"] = volume;
toReturn["operand:0:activation_in"] = volume;
toReturn["result:0:activation_out"] = volume;
toReturn["reads"] = volume;
toReturn["writes"] = volume;
return toReturn;
}
// size op can be zero overhead
std::map<std::string, uint64_t> SizeOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = toReturn["operand:0:activation_in"] = 0;
toReturn["writes"] = toReturn["result:0:activation_out"] = 0;
return toReturn;
}
// squeeze can be zero overhead
std::map<std::string, uint64_t> SqueezeOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = toReturn["operand:0:activation_in"] = 0;
toReturn["writes"] = toReturn["result:0:activation_out"] = 0;
return toReturn;
}
// transpose can be zero overhead
std::map<std::string, uint64_t> TOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = toReturn["operand:0:activation_in"] = 0;
toReturn["writes"] = toReturn["result:0:activation_out"] = 0;
return toReturn;
}
// threshold_backward
std::map<std::string, uint64_t> ThresholdBackwardOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
uint64_t loss_in_volume =
getTensorVolume(getOperand(0).getType().cast<TensorType>());
uint64_t act_in_volume =
getTensorVolume(getOperand(1).getType().cast<TensorType>());
uint64_t loss_out_volume =
getTensorVolume(getResult().getType().cast<TensorType>());
toReturn["reads"] = toReturn["operand:0:activation_in"] =
loss_in_volume + act_in_volume;
toReturn["writes"] = toReturn["result:0:grad:dx"] = loss_out_volume;
return toReturn;
}
// unsqueeze can be zero overhead
std::map<std::string, uint64_t> UnsqueezeOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = toReturn["operand:0:activation_in"] = 0;
toReturn["writes"] = toReturn["result:0:activation_out"] = 0;
return toReturn;
}
// view can be zero overhead
std::map<std::string, uint64_t> ViewOp::getStatistics() {
std::map<std::string, uint64_t> toReturn;
toReturn["reads"] = toReturn["operand:0:activation_in"] = 0;
toReturn["writes"] = toReturn["result:0:activation_out"] = 0;
return toReturn;
}
} // namespace aten
} // namespace NPCOMP
} // namespace mlir