torch-mlir/lib/Conversion/TorchToMhlo/MhloLegalizeUtils.h

85 lines
3.6 KiB
C
Raw Normal View History

//===------------------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#ifndef TORCHMLIR_CONVERSION_TORCHTOMHLO_MHLOLEGALIZEUTILS_H
#define TORCHMLIR_CONVERSION_TORCHTOMHLO_MHLOLEGALIZEUTILS_H
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
namespace mhlo {
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
static constexpr size_t kMhloDimSizeBits = 32;
#else
static constexpr size_t kMhloDimSizeBits = 64;
#endif
using mlir::ConversionPatternRewriter;
// Create a 32-bit float constant operator from a float
Value getMhloConstTensorSingleF32(PatternRewriter &rewriter, Operation *op,
float val);
// Create a 64-bit float constant operator from a double
Value getMhloConstTensorSingleF64(PatternRewriter &rewriter, Operation *op,
double val);
// Templated function to create a constant op for given type and shape.
// T: storage C type.
// Default template creates a constant tensor in T.
// To create INT48 MHLO constant, need to pass in llvm::APInt instead.
template <typename T>
llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
ArrayRef<T> vec, ArrayRef<int64_t> shape);
template <typename T>
Value getSplatConstTensor(ConversionPatternRewriter &rewriter, Operation *op,
T val, Type dtype, llvm::ArrayRef<int64_t> dshape);
LogicalResult torchScalarToMhloTensor(ConversionPatternRewriter &rewriter,
Operation *op, Value torchScalarValue,
Value &mhloTensor, Type dtype,
llvm::ArrayRef<int64_t> dshape,
bool doBroadcast = true);
LogicalResult torchAlphaToMhloTensor(ConversionPatternRewriter &rewriter,
Operation *op, Value alphaScalar,
Value &alphaTensor, Type dtype,
llvm::ArrayRef<int64_t> dshape,
bool checkForUnity);
Value promoteAndBroadcast(ConversionPatternRewriter &rewriter, Value input,
TensorType outType);
SmallVector<size_t> toPositiveDims(ArrayRef<int64_t> dims, int64_t rank);
// Get the dimension sizes of the input tensor, given the dimension axes
FailureOr<SmallVector<Value, 4>> getDimSizesOfTensor(PatternRewriter &rewriter,
Operation *op, Value value,
ArrayRef<int64_t> inpDims);
// Get the dimension sizes of the input tensor
FailureOr<SmallVector<Value, 4>>
getDimSizesOfTensor(PatternRewriter &rewriter, Operation *op, Value value);
// Get a tensor that unsqueezed the specified dimensions of the input tensor
FailureOr<Value> unsqueezeTensor(PatternRewriter &rewriter, Operation *op,
Value tensor,
ArrayRef<int64_t> inputUnsqzDims);
} // namespace mhlo
} // namespace mlir
#endif // TORCHMLIR_CONVERSION_TORCHTOMHLO_MHLOLEGALIZEUTILS_H