mirror of https://github.com/llvm/torch-mlir
68 lines
2.6 KiB
C++
68 lines
2.6 KiB
C++
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
// Also available under a BSD-style license. See LICENSE.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h"
|
||
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h" // from @llvm-project
|
||
|
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h" // from @llvm-project
|
||
|
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
|
||
|
|
||
|
namespace mlir {
|
||
|
namespace tosa {
|
||
|
|
||
|
// Create a TOSA rescale op from input framework tensor, zero points and
|
||
|
// rounding mode
|
||
|
Value buildRescale(PatternRewriter &rewriter, Operation *op,
|
||
|
ShapedType output_type, Value input_val, double scale,
|
||
|
int64_t input_zp, int64_t output_zp, bool double_round,
|
||
|
bool scale32) {
|
||
|
int32_t multiplier;
|
||
|
int32_t shift;
|
||
|
|
||
|
int32_t scale_width = scale32 ? 32 : 16;
|
||
|
|
||
|
computeMultiplierAndShift(scale, multiplier, shift, scale_width);
|
||
|
|
||
|
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
|
||
|
rewriter, op->getLoc(), output_type, input_val,
|
||
|
rewriter.getI32IntegerAttr(static_cast<int32_t>(input_zp)),
|
||
|
rewriter.getI32IntegerAttr(static_cast<int32_t>(output_zp)),
|
||
|
rewriter.getI32ArrayAttr({multiplier}), rewriter.getI32ArrayAttr({shift}),
|
||
|
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(double_round),
|
||
|
rewriter.getBoolAttr(false));
|
||
|
|
||
|
return rescale_op.getResult();
|
||
|
}
|
||
|
|
||
|
// Creates TOSA rescale op with int32 output
|
||
|
Value buildRescaleToInt32(PatternRewriter &rewriter, Operation *op,
|
||
|
Value input_val, double input_scale,
|
||
|
int64_t input_zp) {
|
||
|
// Output is always int32 type
|
||
|
auto input_type = input_val.getType().dyn_cast<mlir::ShapedType>();
|
||
|
assert(input_type);
|
||
|
auto output_type = input_type.clone(rewriter.getI32Type());
|
||
|
|
||
|
return buildRescale(rewriter, op, output_type, input_val, input_scale,
|
||
|
input_zp, 0, false, true);
|
||
|
}
|
||
|
|
||
|
// Create a 32-bit float constant operator from a float
|
||
|
Value getTosaConstTensorSingleF32(PatternRewriter &rewriter, Operation *op,
|
||
|
float val) {
|
||
|
auto const_type = RankedTensorType::get({}, rewriter.getF32Type());
|
||
|
auto const_attr = DenseElementsAttr::get(const_type, val);
|
||
|
|
||
|
auto const_op =
|
||
|
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
|
||
|
return const_op.getResult();
|
||
|
}
|
||
|
|
||
|
} // namespace tosa
|
||
|
} // namespace mlir
|