2021-12-03 08:52:01 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h"
|
|
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h" // from @llvm-project
|
|
|
|
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h" // from @llvm-project
|
|
|
|
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
|
|
|
|
|
|
|
|
namespace mlir {
|
|
|
|
namespace tosa {
|
|
|
|
|
|
|
|
// Create a TOSA rescale op from input framework tensor, zero points and
|
|
|
|
// rounding mode
|
|
|
|
Value buildRescale(PatternRewriter &rewriter, Operation *op,
|
|
|
|
ShapedType output_type, Value input_val, double scale,
|
|
|
|
int64_t input_zp, int64_t output_zp, bool double_round,
|
|
|
|
bool scale32) {
|
|
|
|
int32_t multiplier;
|
|
|
|
int32_t shift;
|
|
|
|
|
|
|
|
int32_t scale_width = scale32 ? 32 : 16;
|
|
|
|
|
|
|
|
computeMultiplierAndShift(scale, multiplier, shift, scale_width);
|
|
|
|
|
|
|
|
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
|
|
|
|
rewriter, op->getLoc(), output_type, input_val,
|
|
|
|
rewriter.getI32IntegerAttr(static_cast<int32_t>(input_zp)),
|
|
|
|
rewriter.getI32IntegerAttr(static_cast<int32_t>(output_zp)),
|
|
|
|
rewriter.getI32ArrayAttr({multiplier}), rewriter.getI32ArrayAttr({shift}),
|
|
|
|
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(double_round),
|
|
|
|
rewriter.getBoolAttr(false));
|
|
|
|
|
|
|
|
return rescale_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates TOSA rescale op with int32 output
|
|
|
|
Value buildRescaleToInt32(PatternRewriter &rewriter, Operation *op,
|
|
|
|
Value input_val, double input_scale,
|
|
|
|
int64_t input_zp) {
|
|
|
|
// Output is always int32 type
|
|
|
|
auto input_type = input_val.getType().dyn_cast<mlir::ShapedType>();
|
|
|
|
assert(input_type);
|
|
|
|
auto output_type = input_type.clone(rewriter.getI32Type());
|
|
|
|
|
|
|
|
return buildRescale(rewriter, op, output_type, input_val, input_scale,
|
|
|
|
input_zp, 0, false, true);
|
|
|
|
}
|
|
|
|
|
2022-01-27 11:16:13 +08:00
|
|
|
// Creates a TOSA rescale op based on conv2d parameters.
|
|
|
|
Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,
|
|
|
|
Value conv_val, ShapedType input_type,
|
|
|
|
ShapedType weight_type, ShapedType output_type) {
|
|
|
|
auto input_qtype =
|
|
|
|
input_type.getElementType().dyn_cast<mlir::quant::UniformQuantizedType>();
|
|
|
|
auto output_qtype = output_type.getElementType()
|
|
|
|
.dyn_cast<mlir::quant::UniformQuantizedType>();
|
|
|
|
|
|
|
|
double input_scale = input_qtype.getScale();
|
|
|
|
|
|
|
|
int64_t output_zp = output_qtype.getZeroPoint();
|
|
|
|
double output_scale = output_qtype.getScale();
|
|
|
|
|
|
|
|
bool scale32 = isScale32(output_qtype);
|
|
|
|
int32_t scale_width = scale32 ? 32 : 16;
|
|
|
|
|
|
|
|
if (auto weight_per_tensor_qtype =
|
|
|
|
weight_type.getElementType()
|
|
|
|
.dyn_cast<mlir::quant::UniformQuantizedType>()) {
|
|
|
|
// Per-tensor quantization
|
|
|
|
double weight_scale = weight_per_tensor_qtype.getScale();
|
|
|
|
|
|
|
|
int32_t multiplier;
|
|
|
|
int32_t shift;
|
|
|
|
|
|
|
|
double op_tensor_scale = (input_scale * weight_scale) / output_scale;
|
|
|
|
|
|
|
|
computeMultiplierAndShift(op_tensor_scale, multiplier, shift, scale_width);
|
|
|
|
|
|
|
|
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
|
|
|
|
rewriter, op->getLoc(), output_type, conv_val,
|
|
|
|
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
|
|
|
|
rewriter.getI32ArrayAttr({multiplier}),
|
|
|
|
rewriter.getI32ArrayAttr({shift}), rewriter.getBoolAttr(scale32),
|
|
|
|
rewriter.getBoolAttr(true), rewriter.getBoolAttr(false));
|
|
|
|
|
|
|
|
return rescale_op.getResult();
|
|
|
|
|
|
|
|
} else if (auto weight_per_channel_qtype =
|
|
|
|
weight_type.getElementType()
|
|
|
|
.dyn_cast<mlir::quant::UniformQuantizedPerAxisType>()) {
|
|
|
|
// Per-channel quantization
|
|
|
|
SmallVector<int32_t> multiplier_arr;
|
|
|
|
SmallVector<int32_t> shift_arr;
|
|
|
|
|
|
|
|
SmallVector<double> weight_scale_arr(
|
|
|
|
weight_per_channel_qtype.getScales().begin(),
|
|
|
|
weight_per_channel_qtype.getScales().end());
|
|
|
|
|
|
|
|
int64_t output_zp = output_qtype.getZeroPoint();
|
|
|
|
double output_scale = output_qtype.getScale();
|
|
|
|
|
|
|
|
for (double weight_scale : weight_scale_arr) {
|
|
|
|
int32_t multiplier;
|
|
|
|
int32_t shift;
|
|
|
|
|
|
|
|
double op_channel_scale = (input_scale * weight_scale) / output_scale;
|
|
|
|
|
|
|
|
computeMultiplierAndShift(op_channel_scale, multiplier, shift,
|
|
|
|
scale_width);
|
|
|
|
|
|
|
|
multiplier_arr.push_back(multiplier);
|
|
|
|
shift_arr.push_back(shift);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
|
|
|
|
rewriter, op->getLoc(), output_type, conv_val,
|
|
|
|
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
|
|
|
|
rewriter.getI32ArrayAttr(multiplier_arr),
|
|
|
|
rewriter.getI32ArrayAttr(shift_arr), rewriter.getBoolAttr(scale32),
|
|
|
|
rewriter.getBoolAttr(true), rewriter.getBoolAttr(true));
|
|
|
|
|
|
|
|
return rescale_op.getResult();
|
|
|
|
|
|
|
|
} else {
|
|
|
|
op->emitOpError("buildConvRescaleOp: unknown weight quantized type");
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if scale32 mode is used for given output_element_type
|
|
|
|
bool isScale32(mlir::quant::UniformQuantizedType output_element_type) {
|
|
|
|
return (output_element_type.getStorageTypeIntegralWidth() == 8);
|
|
|
|
}
|
|
|
|
|
2021-12-03 08:52:01 +08:00
|
|
|
// Create a 32-bit float constant operator from a float
|
|
|
|
Value getTosaConstTensorSingleF32(PatternRewriter &rewriter, Operation *op,
|
|
|
|
float val) {
|
|
|
|
auto const_type = RankedTensorType::get({}, rewriter.getF32Type());
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, val);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
2022-01-15 05:57:27 +08:00
|
|
|
// Templated function to create a constant op for given type and shape.
|
|
|
|
// T: storage C type.
|
|
|
|
// Default template creates a constant tensor in T.
|
|
|
|
template <typename T>
|
|
|
|
llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
|
|
|
ArrayRef<T> vec, ArrayRef<int64_t> shape) {
|
|
|
|
uint64_t num_total_elements = 1;
|
|
|
|
for (int64_t a : shape) {
|
|
|
|
num_total_elements *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec.size() != num_total_elements) {
|
|
|
|
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
|
|
|
return llvm::None;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto const_type =
|
|
|
|
RankedTensorType::get(shape, rewriter.getIntegerType(sizeof(T) * 8));
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, vec);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Template specialization for APInt
|
|
|
|
template <>
|
|
|
|
llvm::Optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
|
|
|
Operation *op, ArrayRef<APInt> vec,
|
|
|
|
ArrayRef<int64_t> shape) {
|
|
|
|
uint64_t num_total_elements = 1;
|
|
|
|
for (int64_t a : shape) {
|
|
|
|
num_total_elements *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec.size() != num_total_elements) {
|
|
|
|
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
|
|
|
return llvm::None;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto const_type = RankedTensorType::get(
|
|
|
|
shape, rewriter.getIntegerType(vec[0].getBitWidth()));
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, vec);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Template specialization for float
|
|
|
|
template <>
|
|
|
|
llvm::Optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
|
|
|
Operation *op, ArrayRef<float> vec,
|
|
|
|
ArrayRef<int64_t> shape) {
|
|
|
|
uint64_t num_total_elements = 1;
|
|
|
|
for (int64_t a : shape) {
|
|
|
|
num_total_elements *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec.size() != num_total_elements) {
|
|
|
|
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
|
|
|
return llvm::None;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto const_type = RankedTensorType::get(shape, rewriter.getF32Type());
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, vec);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Template instantiation
|
|
|
|
template llvm::Optional<Value> getConstTensor<int32_t>(PatternRewriter &,
|
|
|
|
Operation *,
|
|
|
|
ArrayRef<int32_t> vec,
|
|
|
|
ArrayRef<int64_t> shape);
|
|
|
|
|
2022-01-21 02:58:30 +08:00
|
|
|
template llvm::Optional<Value> getConstTensor<int64_t>(PatternRewriter &,
|
|
|
|
Operation *,
|
|
|
|
ArrayRef<int64_t> vec,
|
|
|
|
ArrayRef<int64_t> shape);
|
2021-12-03 08:52:01 +08:00
|
|
|
} // namespace tosa
|
|
|
|
} // namespace mlir
|