torch-mlir/lib/Conversion/TorchToMhlo/GatherOp.cpp

195 lines
7.3 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
#include "../PassDetail.h"
#include "./PopulatePatterns.h"
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
static constexpr size_t kMhloDimSizeBits = 32;
#else
static constexpr size_t kMhloDimSizeBits = 64;
#endif
namespace {
Value gatherTensorAlongSingleAxis(PatternRewriter &rewriter, Operation *op,
Value input, Value indices, int64_t axis) {
auto loc = op->getLoc();
Type intType = rewriter.getIntegerType(kMhloDimSizeBits);
Value one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));
// sliceSizes
auto inputRankTy = input.getType().dyn_cast<RankedTensorType>();
auto inputRank = inputRankTy.getRank();
SmallVector<Value, 4> sliceSizes;
sliceSizes.reserve(inputRank);
for (int64_t r = 0; r < inputRank; ++r) {
if (r == axis) {
sliceSizes.push_back(one);
} else {
sliceSizes.push_back(rewriter.create<arith::IndexCastOp>(
loc, intType, rewriter.create<tensor::DimOp>(loc, input, r)));
}
}
auto sliceSizesTensor =
rewriter.create<tensor::FromElementsOp>(loc, sliceSizes);
// offsetDims
SmallVector<int64_t, 4> offsetDims;
offsetDims.reserve(inputRank);
for (int64_t r = 0; r < axis; ++r) {
offsetDims.push_back(r);
}
auto indicesRankTy = indices.getType().dyn_cast<RankedTensorType>();
auto indicesRank = indicesRankTy.getRank();
for (int64_t r = axis + 1; r < inputRank; ++r) {
offsetDims.push_back(r + indicesRank - 1);
}
// collapsedSliceDims
SmallVector<int64_t, 4> collapsedSliceDims(1, axis);
// startIndexMap
SmallVector<int64_t, 4> startIndexMap(1, axis);
// indexVecDim
int64_t indexVecDim = indicesRank;
auto dimsAttr = mhlo::GatherDimensionNumbersAttr::get(
rewriter.getContext(),
/*offsetDims=*/offsetDims,
/*collapsedSliceDims=*/collapsedSliceDims,
/*startIndexMap=*/startIndexMap,
/*indexVecDim=*/indexVecDim);
// outputShape = input.shape[:axis] + indices.shape +
// input.shape[axis + 1:]
auto inputShape = inputRankTy.getShape();
auto indicesShape = indicesRankTy.getShape();
SmallVector<int64_t, 4> outputShape(inputShape.begin(),
inputShape.begin() + axis);
outputShape.insert(outputShape.end(), indicesShape.begin(),
indicesShape.end());
outputShape.insert(outputShape.end(), inputShape.begin() + axis + 1,
inputShape.end());
// create output tensor type
auto outputTy =
RankedTensorType::get(outputShape, inputRankTy.getElementType());
return rewriter
.create<mhlo::DynamicGatherOp>(loc, outputTy, input, indices,
sliceSizesTensor, dimsAttr)
.getResult();
}
template <typename AtenOpT>
class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
// Ref: https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html
// padding_idx (int, optional)
// If specified, the entries at padding_idx do not contribute to the gradient;
// therefore, the embedding vector at padding_idx is not updated during training,
// i.e. it remains as a fixed “pad”.
// scale_grad_by_freq (boolean, optional)
// If given, this will scale gradients by the inverse of frequency of the
// words in the mini-batch. Default False.
// sparse (bool, optional)
// If True, gradient w.r.t. weight matrix will be a sparse tensor.
template <>
LogicalResult ConvertAtenOp<AtenEmbeddingOp>::matchAndRewrite(
AtenEmbeddingOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto weight = adaptor.weight();
auto weightTy = weight.getType().template cast<RankedTensorType>();
if (!weightTy)
return op.emitError("only ranked tensor types are supported");
int64_t padding_idx;
if (!matchPattern(op.padding_idx(), m_TorchConstantInt(&padding_idx)))
return rewriter.notifyMatchFailure(
op, "only constant padding_idx is currently supported");
bool scale_grad_by_freq;
if (!matchPattern(op.scale_grad_by_freq(),
m_TorchConstantBool(&scale_grad_by_freq)))
return rewriter.notifyMatchFailure(
op, "only constant scale_grad_by_freq is currently supported");
if (scale_grad_by_freq)
return rewriter.notifyMatchFailure(
op, "scale gradients is currently not supported");
bool sparse;
if (!matchPattern(op.sparse(), m_TorchConstantBool(&sparse)))
return rewriter.notifyMatchFailure(
op, "only constant sparse is currently supported");
if (sparse)
return rewriter.notifyMatchFailure(
op, "sparse gradients is currently not supported");
Value output =
gatherTensorAlongSingleAxis(rewriter, op, weight, adaptor.indices(), 0);
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>(
op, getTypeConverter()->convertType(op.getType()), output);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenIndexSelectOp>::matchAndRewrite(
AtenIndexSelectOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("only ranked tensor types are supported");
int64_t dim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "only constant dim is currently supported");
Value output =
gatherTensorAlongSingleAxis(rewriter, op, self, adaptor.index(), dim);
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>(
op, getTypeConverter()->convertType(op.getType()), output);
return success();
}
} // namespace
void mlir::torch::torch_to_mhlo::populateGatherOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
MLIRContext *context = patterns.getContext();
#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
INSERT_ATENOP_PATTERN(AtenEmbeddingOp);
INSERT_ATENOP_PATTERN(AtenIndexSelectOp);
#undef INSERT_ATENOP_PATTERN
}