2022-07-27 13:07:51 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2022-08-02 09:21:37 +08:00
|
|
|
#include "./MhloLegalizeUtils.h"
|
2022-07-27 13:07:51 +08:00
|
|
|
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
|
2022-08-02 09:21:37 +08:00
|
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
|
|
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
|
2022-07-27 13:07:51 +08:00
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
2022-08-02 09:21:37 +08:00
|
|
|
#include <numeric>
|
2022-07-27 13:07:51 +08:00
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
using namespace mlir::torch;
|
|
|
|
using namespace mlir::torch::Torch;
|
|
|
|
|
|
|
|
namespace mlir {
|
|
|
|
namespace mhlo {
|
|
|
|
|
|
|
|
// Create a 32-bit float constant operator from a float
|
|
|
|
Value getMhloConstTensorSingleF32(PatternRewriter &rewriter, Operation *op,
|
|
|
|
float val) {
|
|
|
|
auto const_type = RankedTensorType::get({}, rewriter.getF32Type());
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, val);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<mhlo::ConstantOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a 64-bit float constant operator from a double
|
|
|
|
Value getMhloConstTensorSingleF64(PatternRewriter &rewriter, Operation *op,
|
|
|
|
double val) {
|
|
|
|
auto const_type = RankedTensorType::get({}, rewriter.getF64Type());
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, val);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<mhlo::ConstantOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Templated function to create a constant op for given type and shape.
|
|
|
|
// T: storage C type.
|
|
|
|
// Default template creates a constant tensor in T.
|
|
|
|
template <typename T>
|
|
|
|
llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
|
|
|
ArrayRef<T> vec, ArrayRef<int64_t> shape) {
|
|
|
|
uint64_t num_total_elements = 1;
|
|
|
|
for (int64_t a : shape) {
|
|
|
|
num_total_elements *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec.size() != num_total_elements) {
|
|
|
|
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
|
|
|
return llvm::None;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto const_type =
|
|
|
|
RankedTensorType::get(shape, rewriter.getIntegerType(sizeof(T) * 8));
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, vec);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<mhlo::ConstantOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Template specialization for APInt
|
|
|
|
template <>
|
|
|
|
llvm::Optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
|
|
|
Operation *op, ArrayRef<APInt> vec,
|
|
|
|
ArrayRef<int64_t> shape) {
|
|
|
|
uint64_t num_total_elements = 1;
|
|
|
|
for (int64_t a : shape) {
|
|
|
|
num_total_elements *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec.size() != num_total_elements) {
|
|
|
|
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
|
|
|
return llvm::None;
|
|
|
|
}
|
|
|
|
auto const_type = RankedTensorType::get(
|
|
|
|
shape, rewriter.getIntegerType(vec[0].getBitWidth()));
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, vec);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<mhlo::ConstantOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Template specialization for float
|
|
|
|
template <>
|
|
|
|
llvm::Optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
|
|
|
Operation *op, ArrayRef<float> vec,
|
|
|
|
ArrayRef<int64_t> shape) {
|
|
|
|
uint64_t num_total_elements = 1;
|
|
|
|
for (int64_t a : shape) {
|
|
|
|
num_total_elements *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec.size() != num_total_elements) {
|
|
|
|
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
|
|
|
return llvm::None;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto const_type = RankedTensorType::get(shape, rewriter.getF32Type());
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, vec);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<mhlo::ConstantOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
template <>
|
2022-08-02 12:53:24 +08:00
|
|
|
llvm::Optional<Value>
|
|
|
|
getConstTensor<double>(PatternRewriter &rewriter, Operation *op,
|
|
|
|
ArrayRef<double> vec, ArrayRef<int64_t> shape) {
|
2022-07-27 13:07:51 +08:00
|
|
|
uint64_t num_total_elements = 1;
|
|
|
|
for (int64_t a : shape) {
|
|
|
|
num_total_elements *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vec.size() != num_total_elements) {
|
|
|
|
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
|
|
|
return llvm::None;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto const_type = RankedTensorType::get(shape, rewriter.getF64Type());
|
|
|
|
auto const_attr = DenseElementsAttr::get(const_type, vec);
|
|
|
|
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<mhlo::ConstantOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Template instantiation
|
|
|
|
template llvm::Optional<Value> getConstTensor<int32_t>(PatternRewriter &,
|
|
|
|
Operation *,
|
|
|
|
ArrayRef<int32_t> vec,
|
|
|
|
ArrayRef<int64_t> shape);
|
|
|
|
|
|
|
|
template llvm::Optional<Value> getConstTensor<int64_t>(PatternRewriter &,
|
|
|
|
Operation *,
|
|
|
|
ArrayRef<int64_t> vec,
|
|
|
|
ArrayRef<int64_t> shape);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static bool isInValidRange(bool isFloat, const double &doubleValue, bool isInt,
|
|
|
|
const int64_t &intValue) {
|
|
|
|
if (isFloat) {
|
|
|
|
// Do a round-trip check here instead of numeric limits due to
|
|
|
|
// compiler warnings around double <-> int conversion.
|
|
|
|
return (doubleValue == static_cast<double>(static_cast<T>(doubleValue)));
|
|
|
|
} else {
|
|
|
|
assert(isInt);
|
|
|
|
return (intValue >= std::numeric_limits<T>::min()) &&
|
|
|
|
(intValue <= std::numeric_limits<T>::max());
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
2022-08-02 12:53:24 +08:00
|
|
|
Value getSplatConstTensor(ConversionPatternRewriter &rewriter, Operation *op,
|
|
|
|
T val, Type dtype, llvm::ArrayRef<int64_t> dshape) {
|
|
|
|
auto const_type = RankedTensorType::get(dshape, dtype);
|
2022-07-27 13:07:51 +08:00
|
|
|
auto const_attr = SplatElementsAttr::get(const_type, val);
|
|
|
|
auto const_op =
|
|
|
|
rewriter.create<mhlo::ConstantOp>(op->getLoc(), const_type, const_attr);
|
|
|
|
return const_op.getResult();
|
|
|
|
}
|
|
|
|
|
2022-08-03 08:16:31 +08:00
|
|
|
Value scalarToMhloTensor(ConversionPatternRewriter &rewriter, Operation *op,
|
|
|
|
Value scalarValue, Type dtype) {
|
|
|
|
auto tensor = rewriter.create<tensor::FromElementsOp>(
|
|
|
|
op->getLoc(), ArrayRef<Value>{scalarValue});
|
|
|
|
auto dtype_tensor =
|
|
|
|
rewriter.create<mhlo::ConvertOp>(op->getLoc(), tensor, dtype);
|
|
|
|
return rewriter.create<mhlo::ReshapeOp>(
|
|
|
|
op->getLoc(), RankedTensorType::get(mlir::ArrayRef<int64_t>{}, dtype),
|
|
|
|
dtype_tensor);
|
2022-07-27 13:07:51 +08:00
|
|
|
}
|
|
|
|
|
2022-08-02 12:53:24 +08:00
|
|
|
Value promoteType(PatternRewriter &rewriter, Value input, TensorType outType) {
|
|
|
|
Operation *op = input.getDefiningOp();
|
|
|
|
TensorType in_type = input.getType().dyn_cast<TensorType>();
|
2022-07-27 13:07:51 +08:00
|
|
|
|
2022-08-02 12:53:24 +08:00
|
|
|
if (in_type.getElementType() != outType.getElementType()) {
|
|
|
|
TensorType promotedType =
|
|
|
|
in_type.cloneWith(in_type.getShape(), outType.getElementType());
|
|
|
|
return rewriter.create<mhlo::ConvertOp>(op->getLoc(), promotedType, input);
|
|
|
|
}
|
|
|
|
return input;
|
|
|
|
}
|
|
|
|
|
|
|
|
Value promoteAndBroadcast(ConversionPatternRewriter &rewriter, Value input,
|
|
|
|
TensorType outType) {
|
2022-07-27 13:07:51 +08:00
|
|
|
// Two tensors are “broadcastable” if the following rules hold:
|
|
|
|
// - Each tensor has at least one dimension.
|
2022-08-02 12:53:24 +08:00
|
|
|
// - When iterating over the dimension sizes, starting at the trailing
|
|
|
|
// dimension, the dimension sizes must either be equal, one of them is 1, or
|
|
|
|
// one of them does not exist.
|
|
|
|
Operation *op = input.getDefiningOp();
|
2022-07-27 13:07:51 +08:00
|
|
|
TensorType in_type = input.getType().dyn_cast<TensorType>();
|
|
|
|
|
|
|
|
if (in_type.getElementType() != outType.getElementType()) {
|
2022-08-02 12:53:24 +08:00
|
|
|
TensorType promoted_type =
|
|
|
|
in_type.cloneWith(in_type.getShape(), outType.getElementType());
|
|
|
|
input =
|
|
|
|
rewriter.create<mhlo::ConvertOp>(op->getLoc(), promoted_type, input);
|
2022-07-27 13:07:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ArrayRef<int64_t> inShape = in_type.getShape();
|
|
|
|
ArrayRef<int64_t> outShape = outType.getShape();
|
|
|
|
|
|
|
|
bool do_bcast = (inShape.size() != outShape.size());
|
|
|
|
SmallVector<int64_t> bcastDims;
|
|
|
|
for (size_t i = 0; i < inShape.size(); ++i) {
|
|
|
|
// iterating over the dimension sizes, starting at the trailing dimension
|
|
|
|
size_t outPos = outShape.size() - 1 - i;
|
|
|
|
size_t inPos = inShape.size() - 1 - i;
|
|
|
|
int64_t outDim = outShape[outPos];
|
|
|
|
int64_t inDim = inShape[inPos];
|
|
|
|
if (inDim == outDim) {
|
|
|
|
bcastDims.push_back(outPos);
|
|
|
|
} else if (inDim != outDim && inDim == 1) {
|
|
|
|
bcastDims.push_back(outPos);
|
|
|
|
do_bcast = true;
|
|
|
|
} else {
|
2022-08-02 12:53:24 +08:00
|
|
|
op->emitError("The size of tensor a (")
|
|
|
|
<< inDim << ")"
|
2022-07-27 13:07:51 +08:00
|
|
|
<< "must match the size of tensor b (" << outDim << ")"
|
|
|
|
<< "at non-singleton dimension " << inPos;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::reverse(bcastDims.begin(), bcastDims.end());
|
|
|
|
if (!do_bcast) {
|
|
|
|
return input;
|
|
|
|
}
|
|
|
|
DenseIntElementsAttr bcast_attr = DenseIntElementsAttr::get(
|
2022-08-02 12:53:24 +08:00
|
|
|
RankedTensorType::get({static_cast<long int>(bcastDims.size())},
|
|
|
|
rewriter.getI64Type()),
|
2022-07-27 13:07:51 +08:00
|
|
|
bcastDims);
|
2022-08-02 12:53:24 +08:00
|
|
|
auto bcast_op = rewriter.create<mhlo::BroadcastInDimOp>(op->getLoc(), outType,
|
|
|
|
input, bcast_attr);
|
2022-07-27 13:07:51 +08:00
|
|
|
return bcast_op.getResult();
|
|
|
|
}
|
2022-08-02 09:21:37 +08:00
|
|
|
|
|
|
|
SmallVector<size_t> toPositiveDims(ArrayRef<int64_t> dims, int64_t rank) {
|
|
|
|
SmallVector<size_t> posDims;
|
|
|
|
posDims.reserve(rank);
|
|
|
|
std::transform(
|
|
|
|
dims.begin(), dims.end(), std::back_inserter(posDims),
|
|
|
|
[rank](int64_t d) -> size_t { return toPositiveDim(d, rank); });
|
|
|
|
return posDims;
|
|
|
|
}
|
|
|
|
|
|
|
|
FailureOr<SmallVector<Value, 4>>
|
|
|
|
getDimSizesOfTensor(PatternRewriter &rewriter, Operation *op, Value value,
|
|
|
|
ArrayRef<int64_t> inpDims) {
|
|
|
|
auto valueTy = value.getType().dyn_cast<RankedTensorType>();
|
|
|
|
if (!valueTy) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "getDimSizesOfTensor(): the input is not a ranked tensor");
|
|
|
|
}
|
|
|
|
|
|
|
|
auto rank = valueTy.getRank();
|
|
|
|
auto dims = toPositiveDims(inpDims, rank);
|
|
|
|
SmallVector<Value, 4> dimSizes;
|
|
|
|
dimSizes.reserve(dims.size());
|
|
|
|
|
|
|
|
auto loc = op->getLoc();
|
|
|
|
for (auto d : dims) {
|
|
|
|
dimSizes.emplace_back(rewriter.create<arith::IndexCastOp>(
|
|
|
|
loc, rewriter.getIntegerType(kMhloDimSizeBits),
|
|
|
|
rewriter.create<tensor::DimOp>(loc, value, d)));
|
|
|
|
}
|
|
|
|
return dimSizes;
|
|
|
|
}
|
|
|
|
|
|
|
|
FailureOr<SmallVector<Value, 4>>
|
|
|
|
getDimSizesOfTensor(PatternRewriter &rewriter, Operation *op, Value value) {
|
|
|
|
auto valueTy = value.getType().dyn_cast<RankedTensorType>();
|
|
|
|
if (!valueTy) {
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "getDimSizesOfTensor(): the input is not a ranked tensor");
|
|
|
|
}
|
|
|
|
|
|
|
|
auto rank = valueTy.getRank();
|
|
|
|
// Get int vector [0, 1, ..., rank-1]
|
|
|
|
std::vector<int64_t> dims(rank);
|
|
|
|
std::iota(dims.begin(), dims.end(), 0);
|
|
|
|
return getDimSizesOfTensor(rewriter, op, value, dims);
|
|
|
|
}
|
|
|
|
|
|
|
|
FailureOr<Value> unsqueezeTensor(PatternRewriter &rewriter, Operation *op,
|
|
|
|
Value tensor,
|
|
|
|
ArrayRef<int64_t> inputUnsqzDims) {
|
|
|
|
// Returns a new tensor with dims of size 1 inserted at the specified
|
|
|
|
// position.
|
|
|
|
//
|
|
|
|
// The position indices (must be high to low dimension number of the returned
|
|
|
|
// tensor) are specified with unsqzDims. Indices must be in-order, and in
|
|
|
|
// range of tensor rank. Thus, unsqueeze a rank 1 tensor with {0, 2}, {0, 1,
|
|
|
|
// 3}, {0, 1, 2} are all valid dimension sets, but {0, 3}, {2} are not.
|
|
|
|
auto dimSizesInfo = getDimSizesOfTensor(rewriter, op, tensor);
|
|
|
|
if (failed(dimSizesInfo))
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "failed to get dimension sizes of the input");
|
|
|
|
|
|
|
|
auto dimSizes = *dimSizesInfo;
|
|
|
|
auto rank = dimSizes.size();
|
|
|
|
size_t newRank = rank + inputUnsqzDims.size();
|
|
|
|
auto unsqzDims = toPositiveDims(inputUnsqzDims, newRank);
|
|
|
|
for (size_t k = 0, sz = unsqzDims.size(); k < sz; ++k)
|
|
|
|
if (k > 1 && unsqzDims[k] <= unsqzDims[k - 1])
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "unsqueeze dimensions must be specified in order");
|
|
|
|
|
|
|
|
auto loc = op->getLoc();
|
|
|
|
auto rankTy = tensor.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto oldShape = rankTy.getShape();
|
|
|
|
Type intType = rewriter.getIntegerType(kMhloDimSizeBits);
|
|
|
|
auto one = rewriter.create<arith::ConstantOp>(
|
|
|
|
loc, rewriter.getIntegerAttr(intType, 1));
|
|
|
|
|
|
|
|
std::vector<Value> newDimSizes;
|
|
|
|
std::vector<int64_t> newShape;
|
|
|
|
newDimSizes.reserve(newRank);
|
|
|
|
newShape.reserve(newRank);
|
|
|
|
for (size_t k = 0, i = 0, j = 0; k < newRank; ++k) {
|
|
|
|
if (j < unsqzDims.size() && unsqzDims[j] == k) {
|
|
|
|
newDimSizes.push_back(one);
|
|
|
|
newShape.push_back(1);
|
|
|
|
j++;
|
|
|
|
} else {
|
|
|
|
newDimSizes.push_back(dimSizes[i]);
|
|
|
|
newShape.push_back(oldShape[i]);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto outTy = RankedTensorType::get(newShape, rankTy.getElementType());
|
|
|
|
auto mhloShape = rewriter.create<tensor::FromElementsOp>(loc, newDimSizes);
|
|
|
|
return rewriter.create<mhlo::DynamicReshapeOp>(loc, outTy, tensor, mhloShape)
|
|
|
|
.getResult();
|
|
|
|
}
|
|
|
|
|
2022-08-02 12:53:24 +08:00
|
|
|
Value getConstantOfShape(PatternRewriter &rewriter, Location loc,
|
|
|
|
const APFloat &constant, Value shape,
|
|
|
|
TensorType outType) {
|
|
|
|
auto constAttr = rewriter.getFloatAttr(outType.getElementType(), constant);
|
|
|
|
auto constTensor = rewriter.create<mhlo::ConstantOp>(loc, constAttr);
|
|
|
|
return rewriter
|
|
|
|
.create<mhlo::DynamicBroadcastInDimOp>(loc, outType, constTensor, shape,
|
|
|
|
rewriter.getI64TensorAttr({}))
|
|
|
|
.getResult();
|
|
|
|
}
|
2022-07-27 13:07:51 +08:00
|
|
|
} // namespace mhlo
|
2022-08-03 08:16:31 +08:00
|
|
|
} // namespace mlir
|