2023-12-13 11:02:51 +08:00
|
|
|
# Based on code Copyright (c) Advanced Micro Devices, Inc.
|
|
|
|
#
|
|
|
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
|
|
|
|
"""Imports ONNX graphs to `torch` dialect ops.
|
|
|
|
|
|
|
|
See documentation:
|
|
|
|
https://github.com/llvm/torch-mlir/blob/main/docs/importers/onnx_importer.md
|
|
|
|
|
|
|
|
This file is distributed/forked verbatim into various downstream projects, and
|
|
|
|
it must abide by several rules above and beyond the rest of the codebase:
|
|
|
|
- It must be standalone, only depending on:
|
|
|
|
- `onnx`
|
|
|
|
- `..ir` relative imports to the main IR directory
|
|
|
|
- `..dialects.func` relative import to the `func` dialect (TODO:
|
|
|
|
we are looking to eliminate this dep).
|
|
|
|
- Python standard library
|
|
|
|
- It does not directly use the ODS generated `torch` dialect Python
|
|
|
|
wrappers. This allows it to be used in contexts that only build a C++
|
|
|
|
compiler with minimal IR Python bindings.
|
|
|
|
- It is intended as an enabler for full onnx compilation, only handling
|
|
|
|
the import from ONNX -> the `torch` dialect. Testing, full pipelines,
|
|
|
|
and utilities belong elsewhere.
|
|
|
|
"""
|
|
|
|
|
|
|
|
try:
|
|
|
|
import onnx
|
|
|
|
except ModuleNotFoundError as e:
|
|
|
|
raise ModuleNotFoundError(
|
|
|
|
"The onnx package (`pip install onnx`) is required to use the onnx importer"
|
|
|
|
) from e
|
|
|
|
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
|
|
|
|
import numpy as np
|
2023-12-22 09:05:18 +08:00
|
|
|
import re
|
2023-12-13 11:02:51 +08:00
|
|
|
|
|
|
|
from ..ir import (
|
|
|
|
ArrayAttr,
|
|
|
|
Attribute,
|
|
|
|
Block,
|
|
|
|
Context,
|
|
|
|
DenseElementsAttr,
|
|
|
|
DenseResourceElementsAttr,
|
|
|
|
DictAttr,
|
|
|
|
FloatAttr,
|
|
|
|
BF16Type,
|
|
|
|
ComplexType,
|
|
|
|
F16Type,
|
|
|
|
F32Type,
|
|
|
|
F64Type,
|
|
|
|
Float8E4M3FNType,
|
|
|
|
Float8E5M2FNUZType,
|
|
|
|
Float8E5M2Type,
|
|
|
|
FunctionType,
|
|
|
|
InsertionPoint,
|
|
|
|
IntegerAttr,
|
|
|
|
IntegerType,
|
|
|
|
MLIRError,
|
|
|
|
RankedTensorType,
|
|
|
|
Location,
|
|
|
|
Module,
|
|
|
|
Operation,
|
|
|
|
StringAttr,
|
|
|
|
Type as IrType,
|
|
|
|
Value,
|
|
|
|
)
|
|
|
|
|
|
|
|
from ..dialects import (
|
|
|
|
func as func_dialect,
|
|
|
|
)
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class Config:
|
|
|
|
"""Various configuration settings for the importer."""
|
|
|
|
|
|
|
|
# Ancient ONNX exporters would often add a model input for anything that
|
|
|
|
# might be mutable, providing an initializer for it as well. More modern
|
|
|
|
# tools tools realized this is a really bad idea for a lot of reasons.
|
|
|
|
# We choose to assume more recent norms, even if encountering older
|
|
|
|
# models. Setting this to False probably won't do what you want but
|
|
|
|
# should produce interesting errors to waste your time deciphering.
|
|
|
|
# We mainly use it as a way to document in the code that we are
|
|
|
|
# making an assumption.
|
|
|
|
elide_initialized_inputs: bool = True
|
|
|
|
|
|
|
|
|
|
|
|
class ModelInfo:
|
|
|
|
"""Top-level accounting and accessors for an ONNX model."""
|
|
|
|
|
|
|
|
def __init__(self, model_proto: onnx.ModelProto, *, config: Config = Config()):
|
|
|
|
self.config = config
|
|
|
|
self.model_proto = model_proto
|
|
|
|
assert model_proto.graph, "Model must contain a main Graph"
|
|
|
|
self.main_graph = GraphInfo(self, model_proto.graph)
|
|
|
|
|
|
|
|
def create_module(self, context: Optional[Context] = None) -> Operation:
|
|
|
|
if not context:
|
|
|
|
context = Context()
|
|
|
|
module_op = Module.create(Location.unknown(context)).operation
|
|
|
|
# TODO: Populate module level metadata from the ModelProto
|
|
|
|
return module_op
|
|
|
|
|
|
|
|
|
|
|
|
class GraphInfo:
|
|
|
|
"""Information about a Graph within a model."""
|
|
|
|
|
|
|
|
def __init__(self, model_info: ModelInfo, graph_proto: onnx.GraphProto):
|
|
|
|
self.model_info = model_info
|
|
|
|
self.graph_proto = graph_proto
|
|
|
|
self.initializer_map: dict[str, onnx.TensorProto] = {
|
|
|
|
n.name: n for n in graph_proto.initializer
|
|
|
|
}
|
|
|
|
self.value_info_map: dict[str, onnx.ValueInfoProto] = {
|
|
|
|
n.name: n for n in graph_proto.value_info
|
|
|
|
}
|
|
|
|
self.declared_input_map: dict[str, onnx.ValueInfoProto] = {
|
|
|
|
n.name: n for n in graph_proto.input
|
|
|
|
}
|
|
|
|
self.output_map: dict[str, onnx.ValueInfoProto] = {
|
|
|
|
n.name: n for n in graph_proto.output
|
|
|
|
}
|
|
|
|
|
|
|
|
# Generate the effective input map, which for old models can be a
|
|
|
|
# subset of the input map.
|
|
|
|
if model_info.config.elide_initialized_inputs:
|
|
|
|
self.input_map = {
|
|
|
|
k: v
|
|
|
|
for k, v in self.declared_input_map.items()
|
|
|
|
if k not in self.initializer_map
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
self.input_map = self.declared_input_map
|
|
|
|
illegal_input_keys = self.input_map.keys() - (
|
|
|
|
self.input_map.keys() - self.initializer_map.keys()
|
|
|
|
)
|
|
|
|
assert self.input_map.keys().isdisjoint(self.initializer_map.keys()), (
|
|
|
|
f"When not in elide_initialized_inputs=True, we expect inputs to not "
|
|
|
|
f"have an initial value (got {illegal_input_keys})."
|
|
|
|
)
|
|
|
|
|
|
|
|
def find_type_proto_for_name(self, name: str) -> onnx.TypeProto:
|
|
|
|
# Node outputs don't typically have type information, but shape inference
|
|
|
|
# will associate them in the value_info. If not there, it may be a
|
|
|
|
# graph output, which must have type information.
|
|
|
|
value_info = self.value_info_map.get(name) or self.output_map.get(name)
|
|
|
|
if value_info is not None:
|
|
|
|
return value_info.type
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"No type information associated with '{name}'. Run shape inference?"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class OnnxImportError(Exception):
|
|
|
|
...
|
|
|
|
|
|
|
|
|
|
|
|
class NodeImporter:
|
|
|
|
"""Imports graph nodes into MLIR.
|
|
|
|
|
|
|
|
Typically, the top level graph will be imported into a func whereas dependent
|
|
|
|
graphs may just be imported with references to pre-existing values.
|
|
|
|
|
|
|
|
Note that ONNX requires that graphs be sorted topologically and free of cycles,
|
|
|
|
so we don't take any special steps to order them for dominance.
|
|
|
|
"""
|
|
|
|
|
|
|
|
__slots__ = [
|
|
|
|
"_c",
|
|
|
|
"_cc",
|
|
|
|
"_gi",
|
|
|
|
"_p",
|
|
|
|
"_b",
|
|
|
|
"_nv_map",
|
|
|
|
]
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
graph_info: GraphInfo,
|
|
|
|
*,
|
|
|
|
parent_op: Operation,
|
|
|
|
block: Block,
|
|
|
|
context_cache: "ContextCache",
|
|
|
|
):
|
|
|
|
self._c = parent_op.context
|
|
|
|
self._cc = context_cache
|
|
|
|
self._gi = graph_info
|
|
|
|
self._p = parent_op
|
|
|
|
self._b = block
|
|
|
|
self._nv_map: dict[str, Value] = {}
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def define_function(
|
|
|
|
cls, graph_info: GraphInfo, module_op: Operation
|
|
|
|
) -> "NodeImporter":
|
|
|
|
cc = ContextCache(module_op.context)
|
|
|
|
with module_op.context, Location.name(f"graph:{graph_info.graph_proto.name}"):
|
|
|
|
body = module_op.regions[0].blocks[0]
|
|
|
|
func_name = graph_info.graph_proto.name
|
|
|
|
input_types = [
|
|
|
|
cc.type_proto_to_type(inp.type) for inp in graph_info.input_map.values()
|
|
|
|
]
|
|
|
|
output_types = [
|
|
|
|
cc.type_proto_to_type(out.type)
|
|
|
|
for out in graph_info.output_map.values()
|
|
|
|
]
|
|
|
|
ftype = FunctionType.get(input_types, output_types)
|
|
|
|
func_op = func_dialect.FuncOp(func_name, ftype, ip=InsertionPoint(body))
|
|
|
|
block = func_op.add_entry_block(
|
|
|
|
[Location.name(k) for k in graph_info.input_map.keys()]
|
|
|
|
)
|
|
|
|
imp = NodeImporter(graph_info, parent_op=func_op, block=block, context_cache=cc)
|
|
|
|
for node_name, input_value in zip(graph_info.input_map.keys(), block.arguments):
|
|
|
|
imp._nv_map[node_name] = input_value
|
|
|
|
imp._populate_graph_attrs(func_op)
|
|
|
|
return imp
|
|
|
|
|
|
|
|
def _populate_graph_attrs(self, container_op: Operation):
|
|
|
|
"""Populates graph level meta attributes on the given container op."""
|
|
|
|
m = self._gi.model_info.model_proto
|
|
|
|
with container_op.context:
|
|
|
|
i64_type = IntegerType.get_signed(64)
|
|
|
|
default_opset_version = 0
|
|
|
|
opset_versions: dict[str, IntegerAttr] = {}
|
|
|
|
for opset_import in m.opset_import:
|
|
|
|
if opset_import.domain:
|
|
|
|
opset_versions[opset_import.domain] = IntegerAttr.get(
|
|
|
|
i64_type, opset_import.version
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
default_opset_version = opset_import.version
|
|
|
|
if default_opset_version:
|
|
|
|
container_op.attributes[
|
|
|
|
"torch.onnx_meta.opset_version"
|
|
|
|
] = IntegerAttr.get(i64_type, default_opset_version)
|
|
|
|
if opset_versions:
|
|
|
|
container_op.attributes[
|
|
|
|
"torch.onnx_meta.opset_versions"
|
|
|
|
] = DictAttr.get(opset_versions)
|
|
|
|
container_op.attributes["torch.onnx_meta.ir_version"] = IntegerAttr.get(
|
|
|
|
IntegerType.get_signed(64), m.ir_version
|
|
|
|
)
|
|
|
|
container_op.attributes["torch.onnx_meta.producer_name"] = StringAttr.get(
|
|
|
|
m.producer_name
|
|
|
|
)
|
|
|
|
container_op.attributes[
|
|
|
|
"torch.onnx_meta.producer_version"
|
|
|
|
] = StringAttr.get(m.producer_version)
|
|
|
|
|
|
|
|
def import_all(self):
|
|
|
|
"""Imports all nodes topologically."""
|
|
|
|
# TODO: Consider pulling in initializers on demand since there can be so
|
|
|
|
# much unused crap.
|
|
|
|
for init in self._gi.initializer_map.values():
|
|
|
|
self.import_initializer(init)
|
|
|
|
for node in self._gi.graph_proto.node:
|
|
|
|
self.import_node(node)
|
|
|
|
|
|
|
|
outputs = []
|
|
|
|
for output_name in self._gi.output_map.keys():
|
|
|
|
try:
|
|
|
|
outputs.append(self._nv_map[output_name])
|
|
|
|
except KeyError:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Non topologically produced ONNX graph output '{output_name}'"
|
|
|
|
)
|
|
|
|
with InsertionPoint(self._b), Location.unknown():
|
|
|
|
func_dialect.ReturnOp(outputs)
|
|
|
|
|
|
|
|
def import_node(self, node: onnx.NodeProto):
|
|
|
|
with InsertionPoint(self._b), Location.name(node.name):
|
|
|
|
op_type = node.op_type
|
|
|
|
# Handle special op types that materialize to non-op IR constructs.
|
2024-01-23 05:00:05 +08:00
|
|
|
# Handlers return True if the op was handled, else this function
|
|
|
|
# should process it as a general node.
|
2023-12-13 11:02:51 +08:00
|
|
|
special_key = f"_handle_node_{op_type}"
|
|
|
|
if hasattr(self, special_key):
|
2024-01-23 05:00:05 +08:00
|
|
|
was_handled = getattr(self, special_key)(node)
|
|
|
|
if was_handled:
|
|
|
|
return
|
2023-12-13 11:02:51 +08:00
|
|
|
|
|
|
|
# General node import.
|
|
|
|
input_values = []
|
|
|
|
for input_name in node.input:
|
|
|
|
try:
|
|
|
|
input_values.append(self._nv_map[input_name])
|
|
|
|
except KeyError:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Non topologically produced ONNX node input '{input_name}': {node}"
|
|
|
|
)
|
|
|
|
|
|
|
|
output_names = list(node.output)
|
|
|
|
output_types = [
|
|
|
|
self._cc.type_proto_to_type(self._gi.find_type_proto_for_name(n))
|
|
|
|
for n in output_names
|
|
|
|
]
|
|
|
|
|
|
|
|
# TODO: Attributes.
|
|
|
|
attrs = {
|
|
|
|
"name": StringAttr.get(f"onnx.{op_type}"),
|
|
|
|
}
|
|
|
|
self.import_attributes(node.attribute, attrs)
|
|
|
|
custom_op = Operation.create(
|
|
|
|
name="torch.operator",
|
|
|
|
results=output_types,
|
|
|
|
operands=input_values,
|
|
|
|
attributes=attrs,
|
|
|
|
)
|
|
|
|
for output_name, output_value in zip(output_names, custom_op.results):
|
|
|
|
self._nv_map[output_name] = output_value
|
|
|
|
|
|
|
|
def import_attributes(
|
|
|
|
self, onnx_attrs: list[onnx.AttributeProto], attrs: dict[str, Attribute]
|
|
|
|
):
|
|
|
|
for onnx_attr in onnx_attrs:
|
|
|
|
attr_type = onnx_attr.type
|
|
|
|
if attr_type not in ATTRIBUTE_TYPE_HANDLERS:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Unhandled ONNX attribute type code {attr_type}: {onnx_attr}"
|
|
|
|
)
|
|
|
|
handler = ATTRIBUTE_TYPE_HANDLERS[attr_type]
|
|
|
|
if handler is None:
|
|
|
|
# Active skip.
|
|
|
|
continue
|
|
|
|
elif handler is False:
|
|
|
|
# Active error.
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"ONNX importer does not support generic node attribute type {attr_type}. "
|
|
|
|
f"This likely means that this is a special node which requires specific "
|
|
|
|
f"handling in the importer: {onnx_attr}"
|
|
|
|
)
|
|
|
|
attrs[f"torch.onnx.{onnx_attr.name}"] = handler(onnx_attr, self._cc)
|
|
|
|
|
2024-01-23 05:00:05 +08:00
|
|
|
def import_initializer(self, initializer: onnx.TensorProto, extern_name: str = None) -> Value:
|
|
|
|
# If an explicitly specified name is given, use that; otherwise, pick
|
|
|
|
# up the name from the tensor proto itself
|
|
|
|
iname = extern_name if extern_name else initializer.name
|
|
|
|
with InsertionPoint(self._b), Location.name(iname):
|
2023-12-13 11:02:51 +08:00
|
|
|
value_attr = self._cc.tensor_proto_to_attr(initializer)
|
|
|
|
vtensor_type = self._cc.tensor_proto_to_type(initializer)
|
2024-02-01 03:41:06 +08:00
|
|
|
attrs = {
|
|
|
|
"name": StringAttr.get(f"onnx.Constant"),
|
|
|
|
"torch.onnx.value": value_attr,
|
|
|
|
}
|
2023-12-13 11:02:51 +08:00
|
|
|
literal_op = Operation.create(
|
2024-02-01 03:41:06 +08:00
|
|
|
name="torch.operator",
|
2023-12-13 11:02:51 +08:00
|
|
|
results=[vtensor_type],
|
2024-02-01 03:41:06 +08:00
|
|
|
attributes=attrs,
|
2023-12-13 11:02:51 +08:00
|
|
|
)
|
2024-01-23 05:00:05 +08:00
|
|
|
self._nv_map[iname] = literal_op.result
|
2023-12-13 11:02:51 +08:00
|
|
|
return literal_op.result
|
|
|
|
|
|
|
|
def _get_immediate_tensor(self, name: str) -> np.array:
|
|
|
|
try:
|
|
|
|
initializer = self._gi.initializer_map[name]
|
|
|
|
except KeyError:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"An immediate value for '{name}' was required but it is dynamically produced."
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
dtype = ELEM_TYPE_TO_NUMPY_DTYPE[initializer.data_type]
|
|
|
|
except KeyError:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Unknown ONNX tensor element type to numpy dtype mapping: {initializer.data_type}"
|
|
|
|
)
|
|
|
|
raw_data = initializer.raw_data
|
|
|
|
if raw_data:
|
|
|
|
return np.frombuffer(raw_data, dtype=dtype).reshape(tuple(initializer.dims))
|
|
|
|
else:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Unhandled ONNX TensorProto immediate data: {initializer}"
|
|
|
|
)
|
|
|
|
|
2024-01-23 05:00:05 +08:00
|
|
|
def _handle_node_Constant(self, node: onnx.NodeProto) -> bool:
|
|
|
|
# Special case only for constants specified by value attribute (for now)
|
|
|
|
value_proto = _get_attr(node, "value", False)
|
|
|
|
if not value_proto:
|
|
|
|
return False
|
|
|
|
|
|
|
|
# Produce an initializer for the constant, so that it can be used in
|
|
|
|
# combination with other ops, such as ConstantOfShape, requiring
|
|
|
|
# a constant input
|
|
|
|
assert value_proto.type == onnx.AttributeProto.AttributeType.TENSOR
|
|
|
|
assert len(node.output) == 1
|
|
|
|
const_name = node.output[0]
|
|
|
|
self.import_initializer(value_proto.t, const_name)
|
|
|
|
self._gi.initializer_map[const_name] = value_proto.t
|
|
|
|
return True
|
|
|
|
|
|
|
|
def _handle_node_ConstantOfShape(self, node: onnx.NodeProto) -> bool:
|
2023-12-13 11:02:51 +08:00
|
|
|
# This op is special: It has an input of the shape, and in full generality
|
|
|
|
# could involve eager production of constants of variable size. In
|
|
|
|
# practice, the DNN profile for ONNX makes this very difficult to do
|
|
|
|
# and we hard-assert that the input can be resolved to an immediate
|
|
|
|
# value.
|
|
|
|
assert len(node.input) == 1
|
|
|
|
assert len(node.output) == 1
|
|
|
|
shape = self._get_immediate_tensor(node.input[0]).astype(np.int64)
|
|
|
|
value_proto = _get_attr(node, "value")
|
|
|
|
assert value_proto.type == onnx.AttributeProto.AttributeType.TENSOR
|
|
|
|
tensor_proto = value_proto.t
|
|
|
|
element_type = self._cc.tensor_element_type(tensor_proto.data_type)
|
|
|
|
vtensor_type = self._cc.get_vtensor_type(tuple(shape), element_type)
|
|
|
|
assert len(tensor_proto.dims) == 1 and tensor_proto.dims[0] == 1
|
|
|
|
try:
|
|
|
|
cb = ELEM_TYPE_SPLAT_TENSOR_PROTO_CB[tensor_proto.data_type]
|
|
|
|
except KeyError:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Unhandled splat type for ConstantOfShape: {node} (possible missing mapping in ELEM_TYPE_SPLAT_TENSOR_PROTO_CB)"
|
|
|
|
)
|
|
|
|
value_attr = cb(tensor_proto, tuple(shape))
|
|
|
|
literal_op = Operation.create(
|
|
|
|
name="torch.vtensor.literal",
|
|
|
|
results=[vtensor_type],
|
|
|
|
attributes={"value": value_attr},
|
|
|
|
)
|
|
|
|
self._nv_map[node.output[0]] = literal_op.result
|
2024-01-23 05:00:05 +08:00
|
|
|
return True
|
2023-12-13 11:02:51 +08:00
|
|
|
|
|
|
|
|
|
|
|
class ContextCache:
|
|
|
|
"""Caches per-context lookups of various things."""
|
|
|
|
|
|
|
|
__slots__ = [
|
|
|
|
"_c",
|
|
|
|
"_elem_type_map",
|
|
|
|
"_vtensor_type_map",
|
|
|
|
]
|
|
|
|
|
|
|
|
def __init__(self, context: Context):
|
|
|
|
self._c = context
|
|
|
|
self._elem_type_map: dict[int, IrType] = {}
|
|
|
|
self._vtensor_type_map: dict[tuple[tuple[Optional[int]], IrType], IrType] = {}
|
|
|
|
|
|
|
|
def tensor_element_type(self, elem_type: int) -> IrType:
|
|
|
|
t = self._elem_type_map.get(elem_type)
|
|
|
|
if t is None:
|
|
|
|
try:
|
|
|
|
with self._c:
|
|
|
|
t = ELEM_TYPE_TO_IR_TYPE_CB[elem_type]()
|
|
|
|
except KeyError:
|
|
|
|
raise OnnxImportError(f"Unknown ONNX tensor element type: {elem_type}")
|
|
|
|
self._elem_type_map[elem_type] = t
|
|
|
|
return t
|
|
|
|
|
|
|
|
def get_vtensor_type(
|
|
|
|
self, dims: tuple[Optional[int]], element_type: IrType
|
|
|
|
) -> IrType:
|
|
|
|
key = (dims, element_type)
|
|
|
|
t = self._vtensor_type_map.get(key)
|
|
|
|
if t is None:
|
|
|
|
shape_asm = ",".join("?" if d is None else str(d) for d in dims)
|
|
|
|
asm = f"!torch.vtensor<[{shape_asm}],{str(element_type)}>"
|
|
|
|
try:
|
|
|
|
t = IrType.parse(asm, context=self._c)
|
|
|
|
except MLIRError as e:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Unparseable torch type (MLIR asm format bug?): {asm}"
|
|
|
|
) from e
|
|
|
|
self._vtensor_type_map[key] = t
|
|
|
|
return t
|
|
|
|
|
|
|
|
def tensor_proto_to_type(self, tp: onnx.TensorProto) -> IrType:
|
|
|
|
element_type = self.tensor_element_type(tp.data_type)
|
|
|
|
return self.get_vtensor_type(tuple(tp.dims), element_type)
|
|
|
|
|
|
|
|
def tensor_proto_to_builtin_type(self, tp: onnx.TensorProto) -> IrType:
|
|
|
|
element_type = self.tensor_element_type(tp.data_type)
|
|
|
|
# TODO: Fixme upstream: RankedTensorType.get should not require a location.
|
|
|
|
with Location.unknown():
|
|
|
|
return RankedTensorType.get(tuple(tp.dims), element_type)
|
|
|
|
|
|
|
|
def type_proto_to_type(self, tp: onnx.TypeProto) -> IrType:
|
|
|
|
if tp.tensor_type:
|
|
|
|
tt = tp.tensor_type
|
|
|
|
if not tt.shape:
|
|
|
|
raise OnnxImportError(
|
|
|
|
f"Unsupported Tensor type without shape (run shape inference?): {tp}"
|
|
|
|
)
|
|
|
|
element_type = self.tensor_element_type(tt.elem_type)
|
|
|
|
dims = tuple(
|
|
|
|
(d.dim_value if not d.dim_param else None) for d in tt.shape.dim
|
|
|
|
)
|
|
|
|
return self.get_vtensor_type(dims, element_type)
|
|
|
|
else:
|
|
|
|
# TODO: Others if ever needed. Or we consider ourselves DNN-only.
|
|
|
|
# See TypeProto: sequence_type, map_type, optional_type, sparse_tensor_type.
|
|
|
|
raise OnnxImportError(f"Unsupported ONNX TypeProto: {tp}")
|
|
|
|
|
2023-12-22 09:05:18 +08:00
|
|
|
def _sanitize_name(self, name):
|
|
|
|
if not name.isidentifier():
|
|
|
|
name = "_" + name
|
|
|
|
return re.sub("[:/]", "_", name)
|
|
|
|
|
2023-12-13 11:02:51 +08:00
|
|
|
def tensor_proto_to_attr(self, tp: onnx.TensorProto) -> Attribute:
|
|
|
|
tensor_type = self.tensor_proto_to_builtin_type(tp)
|
|
|
|
if tp.HasField("raw_data"):
|
|
|
|
# Conveniently, DenseResourceElementsAttr shares the raw data
|
|
|
|
# format. We just give it maximum numeric alignment.
|
|
|
|
return DenseResourceElementsAttr.get_from_buffer(
|
2023-12-22 09:05:18 +08:00
|
|
|
tp.raw_data, self._sanitize_name(tp.name), tensor_type, alignment=8
|
2023-12-13 11:02:51 +08:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
# We have to do a data type specific instantiation from proto fields.
|
|
|
|
# Since this is typically used for small tensor constants, we instantiate
|
|
|
|
# as a DenseElementsAttr.
|
|
|
|
handler = ELEM_TYPE_INLINE_TENSOR_PROTO_CB.get(tp.data_type)
|
|
|
|
if handler is None:
|
|
|
|
raise OnnxImportError(f"Unhandled ONNX TensorProto data: {tp}")
|
|
|
|
return handler(tp)
|
|
|
|
|
|
|
|
|
|
|
|
ELEM_TYPE_TO_IR_TYPE_CB = {
|
|
|
|
onnx.TensorProto.DataType.FLOAT: lambda: F32Type.get(),
|
|
|
|
onnx.TensorProto.DataType.UINT8: lambda: IntegerType.get_unsigned(8),
|
|
|
|
onnx.TensorProto.DataType.INT8: lambda: IntegerType.get_signed(8),
|
|
|
|
onnx.TensorProto.DataType.UINT16: lambda: IntegerType.get_unsigned(16),
|
|
|
|
onnx.TensorProto.DataType.INT16: lambda: IntegerType.get_signed(16),
|
|
|
|
onnx.TensorProto.DataType.INT32: lambda: IntegerType.get_signed(32),
|
|
|
|
onnx.TensorProto.DataType.INT64: lambda: IntegerType.get_signed(64),
|
|
|
|
onnx.TensorProto.DataType.BOOL: lambda: IntegerType.get_signless(1),
|
|
|
|
onnx.TensorProto.DataType.FLOAT16: lambda: F16Type.get(),
|
|
|
|
onnx.TensorProto.DataType.DOUBLE: lambda: F64Type.get(),
|
|
|
|
onnx.TensorProto.DataType.UINT32: lambda: IntegerType.get_unsigned(32),
|
|
|
|
onnx.TensorProto.DataType.UINT64: lambda: IntegerType.get_unsigned(64),
|
|
|
|
onnx.TensorProto.DataType.COMPLEX64: lambda: ComplexType.get(F32Type.get()),
|
|
|
|
onnx.TensorProto.DataType.COMPLEX128: lambda: ComplexType.get(F64Type.get()),
|
|
|
|
onnx.TensorProto.DataType.BFLOAT16: lambda: BF16Type.get(),
|
|
|
|
onnx.TensorProto.DataType.FLOAT8E4M3FN: lambda: Float8E4M3FNType.get(),
|
|
|
|
onnx.TensorProto.DataType.FLOAT8E4M3FNUZ: lambda: Float8E5M2FNUZType.get(),
|
|
|
|
onnx.TensorProto.DataType.FLOAT8E5M2: lambda: Float8E5M2Type.get(),
|
|
|
|
onnx.TensorProto.DataType.FLOAT8E5M2FNUZ: lambda: Float8E5M2FNUZType.get(),
|
|
|
|
# Ommitted: STRING,
|
|
|
|
}
|
|
|
|
|
|
|
|
ELEM_TYPE_SPLAT_TENSOR_PROTO_CB = {
|
|
|
|
onnx.TensorProto.DataType.FLOAT: lambda tp, shape: DenseElementsAttr.get_splat(
|
|
|
|
RankedTensorType.get(shape, F32Type.get()), FloatAttr.get_f32(tp.float_data[0])
|
|
|
|
),
|
2024-01-23 05:00:05 +08:00
|
|
|
onnx.TensorProto.DataType.INT64: lambda tp, shape: DenseElementsAttr.get_splat(
|
|
|
|
RankedTensorType.get(shape, IntegerType.get_signed(64)), IntegerAttr.get(
|
|
|
|
IntegerType.get_signed(64), int.from_bytes(tp.raw_data, "little",
|
|
|
|
signed=True) if tp.HasField("raw_data") else tp.int64_data[0])
|
|
|
|
),
|
2023-12-13 11:02:51 +08:00
|
|
|
# TODO: All the rest from ELEM_TYPE_TO_IR_TYPE_CB
|
|
|
|
}
|
|
|
|
|
|
|
|
# Mapping of TensorProto.DataType to lambda TensorProto, returning a DenseElementsAttr
|
|
|
|
# of the builtin tensor type for cases where the tensor data is inlined as typed
|
|
|
|
# values instead of raw_data.
|
|
|
|
ELEM_TYPE_INLINE_TENSOR_PROTO_CB = {
|
|
|
|
onnx.TensorProto.DataType.FLOAT: lambda tp: DenseElementsAttr.get(
|
|
|
|
np.asarray(tp.float_data, dtype=np.float32).reshape(tp.dims), signless=False
|
|
|
|
),
|
|
|
|
onnx.TensorProto.DataType.INT32: lambda tp: DenseElementsAttr.get(
|
|
|
|
np.asarray(tp.int32_data, dtype=np.int32).reshape(tp.dims), signless=False
|
|
|
|
),
|
|
|
|
onnx.TensorProto.DataType.INT64: lambda tp: DenseElementsAttr.get(
|
|
|
|
np.asarray(tp.int64_data, dtype=np.int64).reshape(tp.dims), signless=False
|
|
|
|
),
|
|
|
|
onnx.TensorProto.DataType.DOUBLE: lambda tp: DenseElementsAttr.get(
|
|
|
|
np.asarray(tp.double_data, dtype=np.float64).reshape(tp.dims)
|
|
|
|
),
|
|
|
|
onnx.TensorProto.DataType.UINT32: lambda tp: DenseElementsAttr.get(
|
|
|
|
# Special case. See proto
|
|
|
|
np.asarray(tp.uint64_data, dtype=np.uint32).reshape(tp.dims),
|
|
|
|
signless=False,
|
|
|
|
),
|
|
|
|
onnx.TensorProto.DataType.UINT64: lambda tp: DenseElementsAttr.get(
|
|
|
|
np.asarray(tp.uint64_data, dtype=np.uint64).reshape(tp.dims), signless=False
|
|
|
|
)
|
|
|
|
# Intentionally unsupported: STRING
|
|
|
|
}
|
|
|
|
|
|
|
|
ELEM_TYPE_TO_NUMPY_DTYPE = {
|
|
|
|
onnx.TensorProto.DataType.FLOAT: np.float32,
|
|
|
|
onnx.TensorProto.DataType.UINT8: np.uint8,
|
|
|
|
onnx.TensorProto.DataType.INT8: np.int8,
|
|
|
|
onnx.TensorProto.DataType.UINT16: np.uint16,
|
|
|
|
onnx.TensorProto.DataType.INT16: np.int16,
|
|
|
|
onnx.TensorProto.DataType.INT32: np.int32,
|
|
|
|
onnx.TensorProto.DataType.INT64: np.int64,
|
|
|
|
onnx.TensorProto.DataType.BOOL: np.bool_,
|
|
|
|
onnx.TensorProto.DataType.FLOAT16: np.float16,
|
|
|
|
onnx.TensorProto.DataType.DOUBLE: np.float64,
|
|
|
|
onnx.TensorProto.DataType.UINT32: np.uint32,
|
|
|
|
onnx.TensorProto.DataType.UINT64: np.uint64,
|
|
|
|
onnx.TensorProto.DataType.COMPLEX64: np.complex64,
|
|
|
|
onnx.TensorProto.DataType.COMPLEX128: np.complex128,
|
|
|
|
# onnx.TensorProto.DataType.BFLOAT16:
|
|
|
|
# onnx.TensorProto.DataType.FLOAT8E4M3FN:
|
|
|
|
# onnx.TensorProto.DataType.FLOAT8E4M3FNUZ:
|
|
|
|
# onnx.TensorProto.DataType.FLOAT8E5M2:
|
|
|
|
# onnx.TensorProto.DataType.FLOAT8E5M2FNUZ:
|
|
|
|
# Ommitted: STRING,
|
|
|
|
}
|
|
|
|
|
|
|
|
# Mapping of AttributeType code to one of:
|
|
|
|
# None: Ignore attribute and do not output to MLIR
|
|
|
|
# False: Error if an attribute of this type is present
|
|
|
|
# lambda a:AttributeProto, cc: ContextCache that returns an MLIR Attribute
|
|
|
|
ATTRIBUTE_TYPE_HANDLERS = {
|
|
|
|
onnx.AttributeProto.AttributeType.UNDEFINED: False,
|
|
|
|
onnx.AttributeProto.AttributeType.FLOAT: lambda a, cc: FloatAttr.get(
|
|
|
|
F32Type.get(), a.f
|
|
|
|
),
|
|
|
|
onnx.AttributeProto.AttributeType.INT: lambda a, cc: IntegerAttr.get(
|
|
|
|
IntegerType.get_signed(64), a.i
|
|
|
|
),
|
|
|
|
onnx.AttributeProto.AttributeType.STRING: lambda a, cc: StringAttr.get(a.s),
|
|
|
|
onnx.AttributeProto.AttributeType.TENSOR: lambda a, cc: cc.tensor_proto_to_attr(
|
|
|
|
a.t
|
|
|
|
),
|
|
|
|
onnx.AttributeProto.AttributeType.GRAPH: False,
|
|
|
|
onnx.AttributeProto.AttributeType.SPARSE_TENSOR: False,
|
|
|
|
onnx.AttributeProto.AttributeType.TYPE_PROTO: False,
|
|
|
|
onnx.AttributeProto.AttributeType.FLOATS: lambda a, cc: ArrayAttr.get(
|
|
|
|
[FloatAttr.get(F32Type.get(), f) for f in a.floats]
|
|
|
|
),
|
|
|
|
onnx.AttributeProto.AttributeType.INTS: lambda a, cc: ArrayAttr.get(
|
|
|
|
[IntegerAttr.get(IntegerType.get_signed(64), i) for i in a.ints]
|
|
|
|
),
|
|
|
|
onnx.AttributeProto.AttributeType.STRINGS: lambda a, cc: ArrayAttr.get(
|
|
|
|
[StringAttr.get(s) for s in a.strings]
|
|
|
|
),
|
|
|
|
onnx.AttributeProto.AttributeType.TENSORS: lambda a, cc: ArrayAttr.get(
|
|
|
|
[cc.tensor_proto_to_attr(t) for t in a.tensors]
|
|
|
|
),
|
|
|
|
onnx.AttributeProto.AttributeType.GRAPHS: False,
|
|
|
|
onnx.AttributeProto.AttributeType.SPARSE_TENSORS: False,
|
|
|
|
onnx.AttributeProto.AttributeType.TYPE_PROTOS: False,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2024-01-23 05:00:05 +08:00
|
|
|
def _get_attr(node: onnx.NodeProto, attr_name: str, is_required: bool = True) -> onnx.AttributeProto:
|
2023-12-13 11:02:51 +08:00
|
|
|
for attr in node.attribute:
|
|
|
|
if attr.name == attr_name:
|
|
|
|
return attr
|
2024-01-23 05:00:05 +08:00
|
|
|
if is_required:
|
2023-12-13 11:02:51 +08:00
|
|
|
raise OnnxImportError(f"Required attribute {attr_name} not found in {node}")
|
2024-01-23 05:00:05 +08:00
|
|
|
return None
|