torch-mlir/lib/Conversion/TorchOnnxToTorch/Utils.cpp

133 lines
4.3 KiB
C++
Raw Normal View History

//===------------------------------------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::onnx_c;
Value mlir::torch::onnx_c::createConstantIntList(
OpBinder binder, ConversionPatternRewriter &rewriter,
ArrayRef<int64_t> cstInput) {
SmallVector<Value> cstValue;
for (int64_t i : cstInput) {
cstValue.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
}
return rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
cstValue);
}
Torch::ValueTensorType
mlir::torch::onnx_c::getQTorchTypeFromTorchIntType(Type ty) {
Torch::ValueTensorType tty = dyn_cast<Torch::ValueTensorType>(ty);
if (!tty)
return nullptr;
auto ctx = ty.getContext();
Type dty = tty.getDtype();
if (dty.isUnsignedInteger(8))
dty = Torch::QUInt8Type::get(ctx);
if (dty.isSignedInteger(8))
dty = Torch::QInt8Type::get(ctx);
if (dty.isSignedInteger(16))
dty = Torch::QInt16Type::get(ctx);
if (dty.isSignedInteger(32))
dty = Torch::QInt32Type::get(ctx);
if (!dty)
return nullptr;
return Torch::ValueTensorType::get(ctx, tty.getOptionalSizes(), dty);
}
bool mlir::torch::onnx_c::areAllElementsDistinct(SmallVector<int64_t> array) {
int n = array.size();
llvm::SetVector<int64_t> set;
for (int i = 0; i < n; i++) {
set.insert(array[i]);
}
// If all elements are distinct, then the size of set should be same
// as array's size.
return (set.size() == array.size());
}
std::optional<int64_t>
mlir::torch::onnx_c::onnxDtypeIntToTorchDtypeInt(int64_t dtypeIntOnnx) {
// TODO: Add complete mapping.
// Where are the ONNX and PyTorch dtype enums defined?
// ONNX:
// https://github.com/shouxieai/tensorRT_Pro/blob/main/onnx/onnx-ml.proto
// PyTorch:
// https://github.com/llvm/torch-mlir/blob/main/include/torch-mlir/Dialect/Torch/Utils/TorchUpstream.h#L88
std::optional<int64_t> dtypeIntTorch =
[dtypeIntOnnx]() -> std::optional<int64_t> {
switch (dtypeIntOnnx) {
case 1:
return 6; // float
case 2:
return 0; // uint8
case 3:
return 1; // int8
case 6:
return 3; // int32
case 7:
return 4; // int64
case 9:
return 11; // bool
case 10:
return 5; // half
case 11:
return 7; // double
case 16:
return 15; // bfloat16
default:
return std::nullopt; // No dtype
}
}();
return dtypeIntTorch;
}
LogicalResult mlir::torch::onnx_c::createTorchTransposeOp(
ConversionPatternRewriter &rewriter, Location loc, Value input,
int64_t dimA, int64_t dimB, Value &transposed) {
Type transposedType;
if (failed(getTransposedType(cast<Torch::BaseTensorType>(input.getType()),
dimA, dimB, transposedType)))
return failure();
Value cstDimA = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dimA));
Value cstDimB = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dimB));
transposed = rewriter.create<Torch::AtenTransposeIntOp>(
loc, transposedType, input, cstDimA, cstDimB);
return success();
}
LogicalResult mlir::torch::onnx_c::createTorchPermuteOp(
OpBinder binder, ConversionPatternRewriter &rewriter, Location loc,
Value input, SmallVector<int64_t> permuteDims, Value &permuted) {
Type permutedType;
if (failed(
Torch::getPermutedType(cast<Torch::BaseTensorType>(input.getType()),
permuteDims, permutedType)))
return failure();
Value permuteDimsList = createConstantIntList(binder, rewriter, permuteDims);
permuted = rewriter.create<Torch::AtenPermuteOp>(loc, permutedType, input,
permuteDimsList);
return success();
}