mirror of https://github.com/llvm/torch-mlir
53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
# Also available under a BSD-style license. See LICENSE.
|
||
|
|
||
|
from PIL import Image
|
||
|
import requests
|
||
|
|
||
|
import torch
|
||
|
from torchvision import transforms
|
||
|
|
||
|
|
||
|
DEFAULT_IMAGE_URL = (
|
||
|
"https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg"
|
||
|
)
|
||
|
DEFAULT_LABEL_URL = (
|
||
|
"https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt"
|
||
|
)
|
||
|
|
||
|
|
||
|
def load_and_preprocess_image(url: str = DEFAULT_IMAGE_URL):
|
||
|
headers = {
|
||
|
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"
|
||
|
}
|
||
|
img = Image.open(requests.get(url, headers=headers, stream=True).raw).convert("RGB")
|
||
|
# preprocessing pipeline
|
||
|
preprocess = transforms.Compose(
|
||
|
[
|
||
|
transforms.Resize(256),
|
||
|
transforms.CenterCrop(224),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||
|
]
|
||
|
)
|
||
|
img_preprocessed = preprocess(img)
|
||
|
return torch.unsqueeze(img_preprocessed, 0)
|
||
|
|
||
|
|
||
|
def load_labels(url: str = DEFAULT_LABEL_URL):
|
||
|
classes_text = requests.get(
|
||
|
url=url,
|
||
|
stream=True,
|
||
|
).text
|
||
|
labels = [line.strip() for line in classes_text.splitlines()]
|
||
|
return labels
|
||
|
|
||
|
|
||
|
def top3_possibilities(res, labels):
|
||
|
_, indexes = torch.sort(res, descending=True)
|
||
|
percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100
|
||
|
top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]]
|
||
|
return top3
|