2021-11-30 21:05:33 +08:00
|
|
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from torch_mlir_e2e_test.torchscript.framework import TestUtils
|
|
|
|
from torch_mlir_e2e_test.torchscript.registry import register_test_case
|
|
|
|
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
|
|
|
|
|
|
|
|
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
class NllLossModule(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
@export
|
|
|
|
@annotate_args([
|
|
|
|
None,
|
|
|
|
([-1, -1], torch.float32, True),
|
|
|
|
([-1], torch.int64, True),
|
|
|
|
])
|
|
|
|
# Here the 2nd index is ignored.
|
|
|
|
def forward(self, x, y):
|
2022-01-13 02:36:17 +08:00
|
|
|
return torch.ops.aten.nll_loss_forward(x,
|
2021-11-30 21:05:33 +08:00
|
|
|
target=y,
|
|
|
|
weight=None,
|
|
|
|
reduction=0,
|
|
|
|
ignore_index=2)[0]
|
|
|
|
|
|
|
|
|
|
|
|
@register_test_case(module_factory=lambda: NllLossModule())
|
|
|
|
def NllLossModule_basic(module, tu: TestUtils):
|
|
|
|
module.forward(tu.rand(2, 3), torch.tensor([0, 1]))
|
|
|
|
|
|
|
|
|
|
|
|
class NllLossModule_ignore_index_out_of_bounds(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
@export
|
|
|
|
@annotate_args([
|
|
|
|
None,
|
|
|
|
([-1, -1], torch.float32, True),
|
|
|
|
([-1], torch.int64, True),
|
|
|
|
])
|
|
|
|
# None of the index is ignored here, since the ignored index is out of bounds.
|
|
|
|
def forward(self, x, y):
|
2022-01-13 02:36:17 +08:00
|
|
|
return torch.ops.aten.nll_loss_forward(x,
|
2021-11-30 21:05:33 +08:00
|
|
|
target=y,
|
|
|
|
weight=None,
|
|
|
|
reduction=0,
|
|
|
|
ignore_index=10)[0]
|
|
|
|
|
|
|
|
|
|
|
|
@register_test_case(module_factory=lambda: NllLossModule_ignore_index_out_of_bounds())
|
|
|
|
def NllLossModule_ignore_index(module, tu: TestUtils):
|
|
|
|
module.forward(tu.rand(2, 3), torch.tensor([0, 1]))
|
2022-02-03 19:23:17 +08:00
|
|
|
|
|
|
|
class NllLossModule_backward(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
@export
|
|
|
|
@annotate_args([
|
|
|
|
None,
|
|
|
|
([-1], torch.float32, True),
|
|
|
|
([-1, -1], torch.float32, True),
|
|
|
|
([-1], torch.int64, True),
|
|
|
|
([], torch.float32, True),
|
|
|
|
])
|
|
|
|
def forward(self, grad_output, input, target, total_weight):
|
2022-02-15 01:04:38 +08:00
|
|
|
return torch.ops.aten.nll_loss_backward(grad_output,
|
|
|
|
input,
|
|
|
|
target=target,
|
|
|
|
weight=None,
|
|
|
|
reduction=0,
|
|
|
|
ignore_index=10,
|
|
|
|
total_weight=total_weight)
|
2022-02-03 19:23:17 +08:00
|
|
|
|
|
|
|
|
|
|
|
@register_test_case(module_factory=lambda: NllLossModule_backward())
|
|
|
|
def NllLossModuleBackward_basic(module, tu: TestUtils):
|
|
|
|
module.forward(tu.rand(3), tu.rand(3, 4), torch.tensor([2, 3, 0]),
|
|
|
|
torch.tensor(3.))
|
|
|
|
|
|
|
|
|
|
|
|
class NllLossModule_backward_ignore_index(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
@export
|
|
|
|
@annotate_args([
|
|
|
|
None,
|
|
|
|
([-1], torch.float32, True),
|
|
|
|
([-1, -1], torch.float32, True),
|
|
|
|
([-1], torch.int64, True),
|
|
|
|
([], torch.float32, True),
|
|
|
|
])
|
|
|
|
def forward(self, grad_output, input, target, total_weight):
|
2022-02-15 01:04:38 +08:00
|
|
|
return torch.ops.aten.nll_loss_backward(grad_output,
|
|
|
|
input,
|
2022-02-03 19:23:17 +08:00
|
|
|
target=target,
|
|
|
|
weight=None,
|
|
|
|
reduction=0,
|
|
|
|
ignore_index=1,
|
|
|
|
total_weight=total_weight)
|
|
|
|
|
|
|
|
|
|
|
|
@register_test_case(
|
|
|
|
module_factory=lambda: NllLossModule_backward_ignore_index())
|
|
|
|
def NllLossModuleBackward_ignore_index(module, tu: TestUtils):
|
|
|
|
module.forward(tu.rand(3), tu.rand(3, 4), torch.tensor([2, 3, 0]),
|
|
|
|
torch.tensor(3.))
|