torch-mlir/lib/Conversion/TorchToLinalg/Linear.cpp

850 lines
37 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
#include "../PassDetail.h"
#include "PopulatePatterns.h"
#include "Utils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include <algorithm>
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
class ConvertAtenMmOp : public OpConversionPattern<AtenMmOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenMmOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value lhs = adaptor.getSelf();
Value rhs = adaptor.getMat2();
// A user can write an errorneous program where `aten.mm` is in fact called
// with operands of invalid rank or dtype. We cannot convert to linalg in
// this case or we will get a verifier error, which corresponds to breaking
// of *internal* compiler invariants, and for a user manifests as a compiler
// crash in the worst case (such as we try to canonicalize/fold/print the
// invalid op before the verifier gets to see it -- also release builds of a
// mature compiler usually have the verifier turned off for compile time
// reasons).
//
// The compiler cannot crash even if the user wrote an erroneous program!
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
if (lhs.getType().cast<RankedTensorType>().getRank() != 2 ||
rhs.getType().cast<RankedTensorType>().getRank() != 2) {
return rewriter.notifyMatchFailure(
op, "expected both operands to aten.mm to be rank 2");
}
Value lhsDim0 = rewriter.create<tensor::DimOp>(loc, lhs, 0);
Value lhsDim1 = rewriter.create<tensor::DimOp>(loc, lhs, 1);
Value rhsDim0 = rewriter.create<tensor::DimOp>(loc, rhs, 0);
Value rhsDim1 = rewriter.create<tensor::DimOp>(loc, rhs, 1);
Value contractingDimEqual = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lhsDim1, rhsDim0);
rewriter.create<cf::AssertOp>(
loc, contractingDimEqual,
rewriter.getStringAttr(
"mismatching contracting dimension for torch.aten.mm"));
Type newResultType = getTypeConverter()->convertType(op.getType());
Type elementType = newResultType.cast<TensorType>().getElementType();
Value initTensor = rewriter.create<tensor::EmptyOp>(
loc, ArrayRef<OpFoldResult>{lhsDim0, rhsDim1}, elementType);
Value c0 = rewriter.create<arith::ConstantOp>(
loc, FloatAttr::get(elementType, 0.0));
Value zeroFill =
rewriter.create<linalg::FillOp>(loc, c0, initTensor).getResult(0);
Value matmul = rewriter
.create<linalg::MatmulOp>(loc, zeroFill.getType(),
ValueRange{lhs, rhs}, zeroFill)
.getResult(0);
// When constructed with just dynamic sizes, EmptyOp will have a result
// type which has all `?`'s for dimensions, which might not be the result
// type of `op`. The constraints on later linalg ops means that the result
// of the MatmulOp will have this type too. So cast it to the desired type
// so that in the end we have the original result type.
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, matmul);
return success();
}
};
} // namespace
2022-05-03 04:01:15 +08:00
namespace {
class ConvertAtenFlipOp : public OpConversionPattern<AtenFlipOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenFlipOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
MLIRContext *context = op.getContext();
Value self = adaptor.getSelf();
auto selfRank = adaptor.getSelf().getType().cast<RankedTensorType>().getRank();
2022-05-03 04:01:15 +08:00
Type elementType =
adaptor.getSelf().getType().cast<RankedTensorType>().getElementType();
2022-05-03 04:01:15 +08:00
Value c1 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
SmallVector<int64_t> axis;
if (!matchPattern(adaptor.getDims(), m_TorchListOfConstantInts(axis)))
2022-05-03 04:01:15 +08:00
return rewriter.notifyMatchFailure(op,
"only constant dim lists supported");
// Only used to calculate flipped values, i.e. those on the flip axes. Other
// dims won't be used.
SmallVector<Value> dims = getTensorSizes(rewriter, loc, self);
for (auto flipDim : axis)
dims[flipDim] = rewriter.create<arith::SubIOp>(loc, dims[flipDim], c1);
Value initTensor = createZeroInitTensor(
rewriter, loc, getTensorSizes(rewriter, loc, self), elementType);
SmallVector<utils::IteratorType> iteratorTypes(
selfRank, utils::IteratorType::parallel);
2022-05-03 04:01:15 +08:00
SmallVector<AffineMap> indexingMaps(
2, AffineMap::getMultiDimIdentityMap(selfRank, context));
Value flipped =
rewriter
.create<linalg::GenericOp>(
loc, self.getType(), self, initTensor, indexingMaps,
iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
SmallVector<Value> indices;
for (auto i = 0; i < selfRank; i++)
indices.push_back(b.create<linalg::IndexOp>(loc, i));
for (auto flipDim : axis) {
indices[flipDim] = b.create<arith::SubIOp>(
loc, dims[flipDim], indices[flipDim]);
}
Value res = b.create<tensor::ExtractOp>(loc, self, indices)
.getResult();
b.create<linalg::YieldOp>(loc, res);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, self.getType(), flipped);
return success();
}
};
} // namespace
namespace {
class ConvertAtenMatmulOp : public OpConversionPattern<AtenMatmulOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenMatmulOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value lhs = adaptor.getSelf();
Value rhs = adaptor.getOther();
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
auto lhsType = lhs.getType().cast<RankedTensorType>();
auto rhsType = rhs.getType().cast<RankedTensorType>();
// Get the rank of both matrix.
unsigned lhsRank = lhsType.getRank();
unsigned rhsRank = rhsType.getRank();
Type newResultType = getTypeConverter()->convertType(op.getType());
auto resultType = newResultType.cast<RankedTensorType>();
Type elementType = resultType.getElementType();
// The different cases of torch_matmul op is mentioned here:
// https://pytorch.org/docs/stable/generated/torch.matmul.html
// First Case: Dot Product.
if (lhsRank == 1 && rhsRank == 1) {
Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0);
Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0);
checkDimEqualHelper(rewriter, loc, lhsDim0, rhsDim0);
Value zeroTensor = createZeroInitTensor(rewriter, loc, {}, elementType);
Value dotProd =
rewriter
.create<linalg::DotOp>(loc, zeroTensor.getType(),
ValueRange{lhs, rhs}, zeroTensor)
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, dotProd);
return success();
}
// Second Case: Vec-Mat Multiplication.
if (lhsRank == 1 && rhsRank == 2) {
Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0);
Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0);
Value rhsDim1 = getDimOp(rewriter, loc, rhs, 1);
checkDimEqualHelper(rewriter, loc, lhsDim0, rhsDim0);
Value zeroTensor =
createZeroInitTensor(rewriter, loc, ValueRange{rhsDim1}, elementType);
Value matmul =
rewriter
.create<linalg::VecmatOp>(loc, zeroTensor.getType(),
ValueRange{lhs, rhs}, zeroTensor)
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, matmul);
return success();
}
// Third Case: Matrix-Vec Multiplication.
if (lhsRank == 2 && rhsRank == 1) {
Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0);
Value lhsDim1 = getDimOp(rewriter, loc, lhs, 1);
Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0);
checkDimEqualHelper(rewriter, loc, lhsDim1, rhsDim0);
Value zeroTensor =
createZeroInitTensor(rewriter, loc, ValueRange{lhsDim0}, elementType);
Value matmul =
rewriter
.create<linalg::MatvecOp>(loc, zeroTensor.getType(),
ValueRange{lhs, rhs}, zeroTensor)
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, matmul);
return success();
}
// Fourth Case: Batch-Matrix Multiplication.
// TODO: Handle batch matrix multiplication when one of the matrix is unity
// rank and the other has batch dimension.
if (lhsRank > 1 && rhsRank > 1) {
unsigned maxRank = std::max(lhsRank, rhsRank);
unsigned minRank = std::min(lhsRank, rhsRank);
unsigned batchRank = maxRank - 2;
// At least one of the matrix must have rank greater than 2.
if (batchRank <= 0) {
return rewriter.notifyMatchFailure(op, "expected batch dimensions");
}
// The `broadcastedBatchShape` contains batch dimensions of the resultant
// matrix.
SmallVector<Value> broadcastedBatchShape(batchRank);
Value maxRankMatrix = (lhsRank > rhsRank) ? lhs : rhs;
Value maxDim;
// Compute broadcasted batch dimensions if the batch dimensions of
// the matrices are broadcastable.
for (unsigned i = 1; i <= batchRank; i++) {
if (i <= minRank - 2) {
Value lhsDim = getDimOp(rewriter, loc, lhs, lhsRank - 2 - i);
Value rhsDim = getDimOp(rewriter, loc, rhs, rhsRank - 2 - i);
maxDim = rewriter.createOrFold<arith::MaxUIOp>(loc, lhsDim, rhsDim);
} else {
maxDim = getDimOp(rewriter, loc, maxRankMatrix, maxRank - 2 - i);
}
broadcastedBatchShape[batchRank - i] = maxDim;
}
Value lhsDim0 = getDimOp(rewriter, loc, lhs, lhsRank - 2);
Value lhsDim1 = getDimOp(rewriter, loc, lhs, lhsRank - 1);
Value rhsDim0 = getDimOp(rewriter, loc, rhs, rhsRank - 2);
Value rhsDim1 = getDimOp(rewriter, loc, rhs, rhsRank - 1);
checkDimEqualHelper(rewriter, loc, lhsDim1, rhsDim0);
// Compute broadcasted shape of both the matrices in integer format.
SmallVector<Value> lhsBroadcastToShape(broadcastedBatchShape);
lhsBroadcastToShape.push_back(lhsDim0);
lhsBroadcastToShape.push_back(lhsDim1);
SmallVector<Value> rhsBroadcastToShape(broadcastedBatchShape);
rhsBroadcastToShape.push_back(rhsDim0);
rhsBroadcastToShape.push_back(rhsDim1);
for (unsigned i = 0; i < maxRank; i++) {
lhsBroadcastToShape[i] =
castIndexToInt64(rewriter, loc, lhsBroadcastToShape[i]);
rhsBroadcastToShape[i] =
castIndexToInt64(rewriter, loc, rhsBroadcastToShape[i]);
}
// Broadcast the batch dimensions of both the matrices.
Value broadcastedLhs, broadcastedRhs;
if (failed(torch_to_linalg::broadcastToGivenShape(
op, rewriter, lhs, lhsBroadcastToShape, broadcastedLhs))) {
return rewriter.notifyMatchFailure(
op, "unable to perform broadcast operation");
}
if (failed(torch_to_linalg::broadcastToGivenShape(
op, rewriter, rhs, rhsBroadcastToShape, broadcastedRhs))) {
return rewriter.notifyMatchFailure(
op, "unable to perform broadcast operation");
}
if (maxRank == 3) {
Value zeroTensor = createZeroInitTensor(
rewriter, loc,
ValueRange{broadcastedBatchShape[0], lhsDim0, rhsDim1},
elementType);
Value matmul =
rewriter
.create<linalg::BatchMatmulOp>(
loc, zeroTensor.getType(),
ValueRange{broadcastedLhs, broadcastedRhs}, zeroTensor)
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, matmul);
return success();
}
// Check if the result of the matrix multiplication has more than one
// dynamic batch dimensions.
SmallVector<int64_t> batchDimsInt =
makeShapeTorchCompatible(resultType.getShape());
batchDimsInt.pop_back();
batchDimsInt.pop_back();
bool multipleDynamicBatchDims =
llvm::count(batchDimsInt, kUnknownSize) > 1;
// TODO: Lowering to `linalg.BatchMatmul` is only possible when there is
// at most one dynamic batch dimension due to limited support of the
// `tensor.ExpandShape` op.
if (!multipleDynamicBatchDims) {
// Collapse the batch dimensions into one dimension. The resultant rank
// will always be 3.
SmallVector<ReassociationIndices> reassociation(3);
for (unsigned i = 0, j = 0; i < maxRank; i++) {
if (i >= batchRank)
j++;
reassociation[j].push_back(i);
}
Value collapsedLhs = rewriter.create<tensor::CollapseShapeOp>(
op->getLoc(), broadcastedLhs, reassociation);
Value collapsedRhs = rewriter.create<tensor::CollapseShapeOp>(
op->getLoc(), broadcastedRhs, reassociation);
// Compute the result shape after collapsing the batch dimensions.
SmallVector<Value> collapsedResultShape;
collapsedResultShape.push_back(broadcastedBatchShape[0]);
for (unsigned i = 1; i < batchRank; i++) {
collapsedResultShape[0] = rewriter.createOrFold<arith::MulIOp>(
loc, collapsedResultShape[0], broadcastedBatchShape[i]);
}
collapsedResultShape.push_back(lhsDim0);
collapsedResultShape.push_back(rhsDim1);
SmallVector<OpFoldResult> updatedCollapseResultShape =
getAsOpFoldResult(collapsedResultShape);
Value initTensor = rewriter.create<tensor::EmptyOp>(
loc, updatedCollapseResultShape, elementType);
Value c0 = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(elementType));
Value zeroTensor =
rewriter.create<linalg::FillOp>(loc, c0, initTensor).getResult(0);
Value batchMatMul =
rewriter
.create<linalg::BatchMatmulOp>(
loc, zeroTensor.getType(),
ValueRange{collapsedLhs, collapsedRhs}, zeroTensor)
.getResult(0);
Value expandResult = rewriter.create<tensor::ExpandShapeOp>(
loc, resultType, batchMatMul, reassociation);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType,
expandResult);
return success();
}
SmallVector<AffineExpr> lhsExpr;
SmallVector<AffineExpr> rhsExpr;
SmallVector<AffineExpr> outExpr;
SmallVector<utils::IteratorType> iteratorTypes(
batchRank, utils::IteratorType::parallel);
for (unsigned i = 0; i < batchRank; i++) {
lhsExpr.push_back(rewriter.getAffineDimExpr(i));
rhsExpr.push_back(rewriter.getAffineDimExpr(i));
outExpr.push_back(rewriter.getAffineDimExpr(i));
}
lhsExpr.insert(lhsExpr.end(), {rewriter.getAffineDimExpr(batchRank),
rewriter.getAffineDimExpr(batchRank + 1)});
rhsExpr.insert(rhsExpr.end(), {rewriter.getAffineDimExpr(batchRank + 1),
rewriter.getAffineDimExpr(batchRank + 2)});
outExpr.insert(outExpr.end(), {rewriter.getAffineDimExpr(batchRank),
rewriter.getAffineDimExpr(batchRank + 2)});
SmallVector<Value> resultShape(broadcastedBatchShape);
resultShape.insert(resultShape.end(), {lhsDim0, rhsDim1});
Value zeroTensor =
createZeroInitTensor(rewriter, loc, resultShape, elementType);
auto indexingMaps =
AffineMap::inferFromExprList({lhsExpr, rhsExpr, outExpr});
iteratorTypes.insert(iteratorTypes.end(),
{utils::IteratorType::parallel,
utils::IteratorType::reduction,
utils::IteratorType::parallel});
Value finalRes =
rewriter
.create<linalg::GenericOp>(
loc, zeroTensor.getType(),
ValueRange{broadcastedLhs, broadcastedRhs}, zeroTensor,
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value l = args[0], r = args[1], res = args[2];
Value mul = b.create<arith::MulFOp>(loc, l, r);
Value add = b.create<arith::AddFOp>(loc, mul, res);
b.create<linalg::YieldOp>(loc, add);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, finalRes);
return success();
}
return failure();
}
};
} // namespace
namespace {
class ConvertAtenBmmOp : public OpConversionPattern<AtenBmmOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenBmmOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op->getLoc();
Value lhs = adaptor.getSelf();
Value rhs = adaptor.getMat2();
RankedTensorType lhsType = lhs.getType().cast<RankedTensorType>();
RankedTensorType rhsType = rhs.getType().cast<RankedTensorType>();
if (lhsType.getRank() != 3 || rhsType.getRank() != 3) {
return rewriter.notifyMatchFailure(
op, "expected both operands to aten.bmm to be rank 3");
}
if (!lhsType.getElementType().isa<mlir::FloatType>() ||
lhsType.getElementType() != rhsType.getElementType())
return op.emitError(
"unimplemented: non floating point operands or operands of "
"different types");
Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0);
Value lhsDim1 = getDimOp(rewriter, loc, lhs, 1);
Value lhsDim2 = getDimOp(rewriter, loc, lhs, 2);
Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0);
Value rhsDim1 = getDimOp(rewriter, loc, rhs, 1);
Value rhsDim2 = getDimOp(rewriter, loc, rhs, 2);
// Check the batch numbers are equal.
checkDimEqualHelper(rewriter, loc, lhsDim0, rhsDim0);
// Check the matrixs shapes are valid for mulplication.
checkDimEqualHelper(rewriter, loc, lhsDim2, rhsDim1);
Type newResultType = getTypeConverter()->convertType(op.getType());
Type elementType = newResultType.cast<TensorType>().getElementType();
Value initTensor0 = createZeroInitTensor(
rewriter, loc, ValueRange{lhsDim0, lhsDim1, rhsDim2}, elementType);
Value bmm =
rewriter
.create<linalg::BatchMatmulOp>(loc, initTensor0.getType(),
ValueRange{lhs, rhs}, initTensor0)
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, bmm);
return success();
}
};
} // namespace
namespace {
2022-04-08 12:47:57 +08:00
class ConvertAtenConvolutionOp : public OpConversionPattern<AtenConvolutionOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
2022-04-08 12:47:57 +08:00
matchAndRewrite(AtenConvolutionOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
MLIRContext *context = op->getContext();
Value input = adaptor.getInput(); /* in form of N*C*H*W */
Value weight = adaptor.getWeight(); /* in form of F*C*H*W */
bool transposed = true;
if (!matchPattern(op.getTransposed(), m_TorchConstantBool(&transposed)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant transposed supported");
Type elementType =
input.getType().cast<RankedTensorType>().getElementType();
if (!elementType.isa<mlir::FloatType>())
return op.emitError("unimplemented: non-floating point type");
2022-04-08 12:47:57 +08:00
size_t inRank = input.getType().cast<RankedTensorType>().getRank();
size_t numSpacialDims = inRank - 2;
if (numSpacialDims != 2)
2022-04-08 12:47:57 +08:00
return rewriter.notifyMatchFailure(
op, "unimplemented: only 2D convolution currently supported");
Type intType = IntegerType::get(context, 64);
auto castIndexToInt = [&](Value v) {
return rewriter.create<arith::IndexCastOp>(loc, intType, v);
};
SmallVector<Value> paddingIntValues;
if (!getListConstructElements(op.getPadding(), paddingIntValues))
return rewriter.notifyMatchFailure(
op, "only support padding from a list construct");
paddingIntValues = getTypeConvertedValues(rewriter, loc, getTypeConverter(),
paddingIntValues);
2022-04-08 12:47:57 +08:00
SmallVector<int64_t> strideInts;
if (!matchPattern(op.getStride(), m_TorchListOfConstantInts(strideInts)))
return rewriter.notifyMatchFailure(op,
"only support constant int strides");
2022-04-08 12:47:57 +08:00
SmallVector<int64_t> dilationInts;
if (!matchPattern(op.getDilation(), m_TorchListOfConstantInts(dilationInts)))
return rewriter.notifyMatchFailure(op,
"only support constant int dilations");
2022-04-08 12:47:57 +08:00
Value inBatch = getDimOp(rewriter, loc, input, 0);
Value inChannels = getDimOp(rewriter, loc, input, 1);
2022-04-08 12:47:57 +08:00
SmallVector<Value> inDims;
for (size_t i = 2; i < inRank; i++)
inDims.push_back(getDimOp(rewriter, loc, input, i));
Value weightBatch = getDimOp(rewriter, loc, weight, 0);
Value weightChannels = getDimOp(rewriter, loc, weight, 1);
2022-04-08 12:47:57 +08:00
SmallVector<Value> weightDims;
for (size_t i = 2; i < inRank; i++)
weightDims.push_back(getDimOp(rewriter, loc, weight, i));
// Checks for valid group size
int64_t groupSize;
if (!matchPattern(op.getGroups(), m_TorchConstantInt(&groupSize)))
return rewriter.notifyMatchFailure(op,
"only constant group size supported.");
Value groups = castIntToIndex(rewriter, loc, adaptor.getGroups());
auto validate = [&](Value toValidate, std::string err) {
Value c0 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(0));
Value inputValid = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, c0,
rewriter.create<arith::RemSIOp>(loc, toValidate, groups));
rewriter.create<cf::AssertOp>(loc, inputValid,
rewriter.getStringAttr(err));
};
validate(inChannels,
"invalid: groups must divide input channel size evenly.");
validate(weightBatch,
"invalid: groups must divide weight batch size evenly.");
SmallVector<Value> dilationIntValues =
getAsConstantIntValues(rewriter, loc, dilationInts);
SmallVector<Value> strideIntValues =
getAsConstantIntValues(rewriter, loc, strideInts);
// Pad the input tensor according to padding.
SmallVector<Value> outDims{inBatch, weightBatch};
Value paddedInput;
if (transposed) {
Value c0 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(0));
Value c1 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
Value c2 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(2));
// Transpose and flip weight
SmallVector<Value> weightInitDims = getTensorSizes(rewriter, loc, weight);
std::iter_swap(weightInitDims.begin(), weightInitDims.begin() + 1);
outDims[1] = weightInitDims[0];
Value weightInitTensor =
createZeroInitTensor(rewriter, loc, weightInitDims, elementType);
SmallVector<utils::IteratorType> iteratorTypes(
inRank, utils::IteratorType::parallel);
SmallVector<AffineMap> indexingMaps{
AffineMap::getMultiDimIdentityMap(inRank, context)};
weight = rewriter
.create<linalg::GenericOp>(
loc, weightInitTensor.getType(), ValueRange{},
weightInitTensor, indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
SmallVector<Value> indices;
for (size_t i = 0; i < inRank; i++)
indices.push_back(b.create<linalg::IndexOp>(loc, i));
std::iter_swap(indices.begin(), indices.begin() + 1);
// Flip only the spatial dimensions (from 2 to inRank)
for (size_t flipDim = 2; flipDim < inRank; flipDim++) {
indices[flipDim] = b.create<arith::SubIOp>(
loc,
b.create<arith::SubIOp>(
loc, weightInitDims[flipDim], c1),
indices[flipDim]);
}
Value res =
b.create<tensor::ExtractOp>(loc, weight, indices)
.getResult();
b.create<linalg::YieldOp>(loc, res);
})
.getResult(0);
// Calculate padded input size, allocate tensor
SmallVector<Value> outerSizes{inBatch, inChannels};
SmallVector<Value> innerSizes{inBatch, inChannels};
SmallVector<Value> offsets{c0, c0};
for (size_t i = 0; i < numSpacialDims; i++) {
Value innerSize = rewriter.create<arith::SubIOp>(loc, inDims[i], c1);
innerSize = rewriter.create<arith::MulIOp>(
loc, innerSize, castIntToIndex(rewriter, loc, strideIntValues[i]));
innerSize = rewriter.create<arith::AddIOp>(loc, innerSize, c1);
Value offset = rewriter.create<arith::SubIOp>(loc, weightDims[i], c1);
offset = rewriter.create<arith::MulIOp>(
loc, offset, castIntToIndex(rewriter, loc, dilationIntValues[i]));
offset = rewriter.create<arith::SubIOp>(
loc, offset, castIntToIndex(rewriter, loc, paddingIntValues[i]));
Value outerSize = rewriter.create<arith::MulIOp>(loc, offset, c2);
outerSize = rewriter.create<arith::AddIOp>(loc, outerSize, innerSize);
outerSizes.push_back(outerSize);
offsets.push_back(offset);
}
// Allocate padded input tensor
Value initTensor =
createZeroInitTensor(rewriter, loc, outerSizes, elementType);
// Insert input into allocated tensor
SmallVector<Value> strideIndexValues{c1, c1};
for (auto stride : strideIntValues)
strideIndexValues.push_back(castIntToIndex(rewriter, loc, stride));
SmallVector<Value> insertSizes = getTensorSizes(rewriter, loc, input);
paddedInput = rewriter.create<tensor::InsertSliceOp>(
loc, torch_to_linalg::removeSizeInformation(rewriter, loc, input),
initTensor, offsets, insertSizes, strideIndexValues);
// Calculate output dims
for (size_t i = 0; i < numSpacialDims; i++)
outDims.push_back(torch_to_linalg::getOutputDimForConvTransposeOps(
rewriter, loc, inDims[i], paddingIntValues[i], dilationIntValues[i],
castIndexToInt(weightDims[i]), strideIntValues[i]));
// Set stride to 1
strideInts.clear();
strideInts.append(numSpacialDims, 1);
} else {
// Pad input
paddedInput = torch_to_linalg::getDynamicZeroPaddedTensor(
op, rewriter, input, paddingIntValues, /*unpaddedDims=*/2);
// Calculate output dims
for (size_t i = 0; i < numSpacialDims; i++)
outDims.push_back(torch_to_linalg::getOutputDimForConvOps(
rewriter, loc, inDims[i], paddingIntValues[i], dilationIntValues[i],
castIndexToInt(weightDims[i]), strideIntValues[i]));
}
Value initTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(outDims), elementType);
Value bias = adaptor.getBias();
Value outputTensor;
if (bias.getType().isa<Torch::NoneType>()) {
Value c0float = rewriter.create<arith::ConstantOp>(
loc, FloatAttr::get(elementType, 0.0));
outputTensor = rewriter.create<linalg::FillOp>(loc, c0float, initTensor)
.getResult(0);
} else {
auto biasType = bias.getType().cast<RankedTensorType>();
if (biasType.getRank() != 1)
return rewriter.notifyMatchFailure(op, "expect bias to be rank 1");
if (elementType != biasType.getElementType())
return rewriter.notifyMatchFailure(op, "unimplemented: type promotion");
auto resultRank = initTensor.getType().cast<RankedTensorType>().getRank();
SmallVector<AffineMap> indexingMaps = {
// bias is used to initialize the channels - dimension 1 of output
AffineMap::get(/*dimCount=*/resultRank, /*symbolCount=*/0,
rewriter.getAffineDimExpr(1), context),
rewriter.getMultiDimIdentityMap(resultRank)};
SmallVector<utils::IteratorType> iteratorTypes(
resultRank, utils::IteratorType::parallel);
outputTensor = rewriter
.create<linalg::GenericOp>(
loc, initTensor.getType(), bias, initTensor,
indexingMaps, iteratorTypes,
[](OpBuilder &b, Location loc, ValueRange args) {
b.create<linalg::YieldOp>(loc, args[0]);
})
.getResult(0);
}
auto stridesAttr = rewriter.getI64VectorAttr(strideInts);
auto dilationAttr = rewriter.getI64VectorAttr(dilationInts);
2022-04-08 12:47:57 +08:00
Value inputStride =
rewriter.create<arith::FloorDivSIOp>(loc, inChannels, groups);
Value weightStride =
rewriter.create<arith::FloorDivSIOp>(loc, weightBatch, groups);
SmallVector<Value> zeroOffsets(inRank, rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexAttr(0)));
SmallVector<Value> unitStrides(inRank, rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexAttr(1)));
SmallVector<Value> outDimSlice(outDims);
outDimSlice[1] = weightStride;
SmallVector<Value> inputSliceSizes{inBatch, inputStride};
inputSliceSizes.append(inDims);
SmallVector<Value> weightSliceSizes{weightStride, weightChannels};
weightSliceSizes.append(weightDims);
Value conv;
if (groupSize == 1) {
// TODO: add 1D and 3D case
conv =
rewriter
.create<linalg::Conv2DNchwFchwOp>(
loc, outputTensor.getType(), ValueRange{paddedInput, weight},
outputTensor, stridesAttr, dilationAttr)
.getResult(0);
} else {
// Special depthwise case
auto inShape = makeShapeTorchCompatible(
input.getType().cast<RankedTensorType>().getShape());
auto weightShape = makeShapeTorchCompatible(
weight.getType().cast<RankedTensorType>().getShape());
if (weightShape[0] != kUnknownSize && inShape[1] == groupSize &&
weightShape[0] % inShape[1] == 0 && weightShape[1] == 1) {
// Collapse weight shape
SmallVector<ReassociationIndices, 4> collapsedDims = {{0, 1}, {2}, {3}};
SmallVector<int64_t> collapsedShape{
(weightShape[0] == kUnknownSize ? kUnknownSize
: weightShape[0] * weightShape[1]),
weightShape[2], weightShape[3]};
Type collapsedType = RankedTensorType::get(
makeShapeLLVMCompatible(collapsedShape), elementType);
Value collapsedWeight = rewriter.create<tensor::CollapseShapeOp>(
loc, collapsedType, weight, collapsedDims);
conv = rewriter
.create<linalg::DepthwiseConv2DNchwChwOp>(
loc, outputTensor.getType(),
ValueRange{paddedInput, collapsedWeight}, outputTensor,
stridesAttr, dilationAttr)
.getResult(0);
Type newResultType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, conv);
return success();
}
// Grouped case, use the grouped conv linalg op
auto expandGroups = [&](Value tensor, size_t dim) {
auto inType = tensor.getType().cast<RankedTensorType>();
auto inShape = makeShapeTorchCompatible(inType.getShape());
SmallVector<int64_t> outShape;
for (auto i = 0; i < (long)inShape.size(); i++) {
if (i == 1) {
outShape.push_back(groupSize);
}
if (i == (long)dim) {
outShape.push_back(inShape[i] == kUnknownSize
? kUnknownSize
: inShape[i] / groupSize);
} else {
outShape.push_back(inShape[i]);
}
}
SmallVector<ReassociationIndices> indices;
for (auto i = 0; i <= (long)inShape.size(); i++) {
if (i == (long)dim) {
indices.push_back({i, ++i});
continue;
}
indices.push_back({i});
}
auto retType = inType.clone(makeShapeLLVMCompatible(outShape));
return rewriter.create<tensor::ExpandShapeOp>(loc, retType, tensor,
indices);
};
auto expandWeight = [&](Value tensor) {
auto inType = tensor.getType().cast<RankedTensorType>();
auto inShape = makeShapeTorchCompatible(inType.getShape());
SmallVector<int64_t> outShape{
groupSize, (inShape[0] == kUnknownSize ? kUnknownSize
: inShape[0] / groupSize)};
outShape.append(inShape.begin() + 1, inShape.end());
SmallVector<ReassociationIndices> indices{{0, 1}};
for (auto i = 2; i <= (long)inShape.size(); i++)
indices.push_back({i});
auto retType = inType.clone(makeShapeLLVMCompatible(outShape));
return rewriter.create<tensor::ExpandShapeOp>(loc, retType, tensor,
indices);
};
Value paddedInputExpanded = expandGroups(paddedInput, 1);
Value weightExpanded = expandWeight(weight);
Value outputTensorExpanded = expandGroups(outputTensor, 1);
// TODO: add 1D and 3D case
conv = rewriter
.create<linalg::Conv2DNgchwFgchwOp>(
loc, outputTensorExpanded.getType(),
ValueRange{paddedInputExpanded, weightExpanded},
outputTensorExpanded, stridesAttr, dilationAttr)
.getResult(0);
SmallVector<ReassociationIndices> indices{{0}, {1, 2}};
for (auto dim = 3; dim <= (int64_t)inRank; dim++)
indices.push_back({dim});
conv = rewriter.create<tensor::CollapseShapeOp>(
loc, outputTensor.getType(), conv, indices);
}
2022-04-08 12:47:57 +08:00
Type newResultType = getTypeConverter()->convertType(op.getType());
2022-04-08 12:47:57 +08:00
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, conv);
return success();
}
};
} // namespace
void mlir::torch::torch_to_linalg::populateLinearPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
MLIRContext *context = patterns.getContext();
target.addIllegalOp<AtenMmOp>();
patterns.add<ConvertAtenMmOp>(typeConverter, context);
2022-05-03 04:01:15 +08:00
target.addIllegalOp<AtenFlipOp>();
patterns.add<ConvertAtenFlipOp>(typeConverter, context);
target.addIllegalOp<AtenMatmulOp>();
patterns.add<ConvertAtenMatmulOp>(typeConverter, context);
target.addIllegalOp<AtenBmmOp>();
patterns.add<ConvertAtenBmmOp>(typeConverter, context);
2022-04-08 12:47:57 +08:00
target.addIllegalOp<AtenConvolutionOp>();
patterns.add<ConvertAtenConvolutionOp>(typeConverter, context);
}