mirror of https://github.com/llvm/torch-mlir
62 lines
2.1 KiB
C++
62 lines
2.1 KiB
C++
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "npcomp/Conversion/NumpyToTCF/Passes.h"
|
||
|
|
||
|
#include "../PassDetail.h"
|
||
|
#include "mlir/Transforms/DialectConversion.h"
|
||
|
#include "npcomp/Dialect/Numpy/IR/NumpyOps.h"
|
||
|
#include "npcomp/Dialect/TCF/IR/TCFOps.h"
|
||
|
|
||
|
using namespace mlir;
|
||
|
using namespace mlir::NPCOMP;
|
||
|
|
||
|
namespace {
|
||
|
template <typename TargetTcfOp>
|
||
|
class ConvertBinaryBuiltinUfuncCallOp
|
||
|
: public OpRewritePattern<Numpy::BuiltinUfuncCallOp> {
|
||
|
public:
|
||
|
ConvertBinaryBuiltinUfuncCallOp(MLIRContext *context, StringRef qualifiedName,
|
||
|
PatternBenefit benefit = 1)
|
||
|
: OpRewritePattern(context, benefit), qualifiedName(qualifiedName) {}
|
||
|
LogicalResult matchAndRewrite(Numpy::BuiltinUfuncCallOp op,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
if (op.qualified_name() != qualifiedName)
|
||
|
return failure();
|
||
|
if (op.inputs().size() != 2)
|
||
|
return failure();
|
||
|
|
||
|
rewriter.replaceOpWithNewOp<TargetTcfOp>(op, op.getResult().getType(),
|
||
|
op.inputs()[0], op.inputs()[1]);
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
StringRef qualifiedName;
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
namespace {
|
||
|
class ConvertNumpyToTCF : public ConvertNumpyToTCFBase<ConvertNumpyToTCF> {
|
||
|
void runOnOperation() {
|
||
|
FuncOp func = getOperation();
|
||
|
MLIRContext *context = &getContext();
|
||
|
|
||
|
OwningRewritePatternList patterns;
|
||
|
patterns.insert<ConvertBinaryBuiltinUfuncCallOp<tcf::AddOp>>(context,
|
||
|
"numpy.add");
|
||
|
(void)applyPatternsAndFoldGreedily(func, patterns);
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
std::unique_ptr<OperationPass<FuncOp>>
|
||
|
mlir::NPCOMP::createConvertNumpyToTCFPass() {
|
||
|
return std::make_unique<ConvertNumpyToTCF>();
|
||
|
}
|