torch-mlir/include/npcomp/Dialect/Npcomprt/IR/NpcomprtOps.td

142 lines
5.1 KiB
TableGen
Raw Normal View History

Rework e2e flow to use new "npcomprt" This ~totally reworks the existing "runtime" stuff to be more principled and usable, such as from Python. It's still not fully production-quality, mainly in the department of memory management (e.g. it currently leaks memory; we need to figure out "who frees memrefs" + the analysis and transformation needed to do that (maybe use upstream buffer allocation pass?)). The user API is in include/npcomp/runtime/UserAPI.h, though include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper. The stuff under {include,lib}/runtime is totally firewalled from the compiler and tiny (<6kB, though no attention has gone into optimizing that size). For example, we don't link in libSupport into the runtime, instead having our own bare bones replacements for basics like ArrayRef (the JITRuntime helps with bridging that gap, since it *can* depend on all common LLVM utilities). The overall features of npcomprt is that it exposes a module that with multiple function entry points. Each function has arguments and results that are tensor-valued, and npcomprt::Tensor is the runtime type that is used to interact with that (and a npcomprt::Ref<T> reference-counting wrapper is provided to wrap npcomprt::Tensor in the common case). From an implementation perspective, an npcomprt module at the LLVM/object/binary level exposes a single module descriptor struct that has pointers to other metadata (currently just a list of function metadata descriptors). All interactions with the npcomp runtime are keyed off of that module descriptor, including function lookups and dispatching. This is done to dodge platform ABI issues and also allow enough reflection to e.g. verify provided arguments. Most of the compiler-side work here was in LowerToNpcomprtABI and LowerToLLVM. Also, - Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting annoying to type the underscores/caps. - misc improvements to bash_helpers.sh
2020-07-09 08:15:40 +08:00
//===-------------------------------------------------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef NPCOMPRT_OPS
#define NPCOMPRT_OPS
include "npcomp/Dialect/Npcomprt/IR/NpcomprtBase.td"
include "mlir/IR/SymbolInterfaces.td"
Rework e2e flow to use new "npcomprt" This ~totally reworks the existing "runtime" stuff to be more principled and usable, such as from Python. It's still not fully production-quality, mainly in the department of memory management (e.g. it currently leaks memory; we need to figure out "who frees memrefs" + the analysis and transformation needed to do that (maybe use upstream buffer allocation pass?)). The user API is in include/npcomp/runtime/UserAPI.h, though include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper. The stuff under {include,lib}/runtime is totally firewalled from the compiler and tiny (<6kB, though no attention has gone into optimizing that size). For example, we don't link in libSupport into the runtime, instead having our own bare bones replacements for basics like ArrayRef (the JITRuntime helps with bridging that gap, since it *can* depend on all common LLVM utilities). The overall features of npcomprt is that it exposes a module that with multiple function entry points. Each function has arguments and results that are tensor-valued, and npcomprt::Tensor is the runtime type that is used to interact with that (and a npcomprt::Ref<T> reference-counting wrapper is provided to wrap npcomprt::Tensor in the common case). From an implementation perspective, an npcomprt module at the LLVM/object/binary level exposes a single module descriptor struct that has pointers to other metadata (currently just a list of function metadata descriptors). All interactions with the npcomp runtime are keyed off of that module descriptor, including function lookups and dispatching. This is done to dodge platform ABI issues and also allow enough reflection to e.g. verify provided arguments. Most of the compiler-side work here was in LowerToNpcomprtABI and LowerToLLVM. Also, - Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting annoying to type the underscores/caps. - misc improvements to bash_helpers.sh
2020-07-09 08:15:40 +08:00
class Npcomprt_Op<string mnemonic, list<OpTrait> traits = []>
: Op<Npcomprt_Dialect, mnemonic, traits> {
}
def Npcomprt_ToMemrefOp : Npcomprt_Op<"to_memref"> {
let summary = "Gets a memref descriptor from a tensor";
let description = [{
Gets a memref descriptor from a tensor.
}];
let arguments = (ins Npcomprt_Tensor:$tensor);
let results = (outs AnyUnrankedMemRef:$memref);
let assemblyFormat = "$tensor attr-dict `:` type($memref)";
}
def Npcomprt_FromMemrefOp : Npcomprt_Op<"from_memref"> {
let summary = "Converts a memref descriptor to a tensor";
let description = [{
Copies the data from a memref into a new tensor.
}];
let arguments = (ins AnyUnrankedMemRef:$memref);
let results = (outs Npcomprt_Tensor:$tensor);
let assemblyFormat = "$memref attr-dict `:` type($memref)";
}
def Npcomprt_AbortIfOp : Npcomprt_Op<"abort_if"> {
let summary = "Aborts if the predicate is true";
let description = [{
Aborts if the predicate is true.
}];
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
let arguments = (ins I1:$pred, StrAttr:$msg);
Rework e2e flow to use new "npcomprt" This ~totally reworks the existing "runtime" stuff to be more principled and usable, such as from Python. It's still not fully production-quality, mainly in the department of memory management (e.g. it currently leaks memory; we need to figure out "who frees memrefs" + the analysis and transformation needed to do that (maybe use upstream buffer allocation pass?)). The user API is in include/npcomp/runtime/UserAPI.h, though include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper. The stuff under {include,lib}/runtime is totally firewalled from the compiler and tiny (<6kB, though no attention has gone into optimizing that size). For example, we don't link in libSupport into the runtime, instead having our own bare bones replacements for basics like ArrayRef (the JITRuntime helps with bridging that gap, since it *can* depend on all common LLVM utilities). The overall features of npcomprt is that it exposes a module that with multiple function entry points. Each function has arguments and results that are tensor-valued, and npcomprt::Tensor is the runtime type that is used to interact with that (and a npcomprt::Ref<T> reference-counting wrapper is provided to wrap npcomprt::Tensor in the common case). From an implementation perspective, an npcomprt module at the LLVM/object/binary level exposes a single module descriptor struct that has pointers to other metadata (currently just a list of function metadata descriptors). All interactions with the npcomp runtime are keyed off of that module descriptor, including function lookups and dispatching. This is done to dodge platform ABI issues and also allow enough reflection to e.g. verify provided arguments. Most of the compiler-side work here was in LowerToNpcomprtABI and LowerToLLVM. Also, - Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting annoying to type the underscores/caps. - misc improvements to bash_helpers.sh
2020-07-09 08:15:40 +08:00
let results = (outs);
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
let assemblyFormat = "$pred `,` $msg attr-dict";
Rework e2e flow to use new "npcomprt" This ~totally reworks the existing "runtime" stuff to be more principled and usable, such as from Python. It's still not fully production-quality, mainly in the department of memory management (e.g. it currently leaks memory; we need to figure out "who frees memrefs" + the analysis and transformation needed to do that (maybe use upstream buffer allocation pass?)). The user API is in include/npcomp/runtime/UserAPI.h, though include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper. The stuff under {include,lib}/runtime is totally firewalled from the compiler and tiny (<6kB, though no attention has gone into optimizing that size). For example, we don't link in libSupport into the runtime, instead having our own bare bones replacements for basics like ArrayRef (the JITRuntime helps with bridging that gap, since it *can* depend on all common LLVM utilities). The overall features of npcomprt is that it exposes a module that with multiple function entry points. Each function has arguments and results that are tensor-valued, and npcomprt::Tensor is the runtime type that is used to interact with that (and a npcomprt::Ref<T> reference-counting wrapper is provided to wrap npcomprt::Tensor in the common case). From an implementation perspective, an npcomprt module at the LLVM/object/binary level exposes a single module descriptor struct that has pointers to other metadata (currently just a list of function metadata descriptors). All interactions with the npcomp runtime are keyed off of that module descriptor, including function lookups and dispatching. This is done to dodge platform ABI issues and also allow enough reflection to e.g. verify provided arguments. Most of the compiler-side work here was in LowerToNpcomprtABI and LowerToLLVM. Also, - Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting annoying to type the underscores/caps. - misc improvements to bash_helpers.sh
2020-07-09 08:15:40 +08:00
}
def Npcomprt_GlobalOp : Npcomprt_Op<"global", [Symbol]> {
let summary = "Represents a global variable";
let description = [{
Represents a global variable.
Currently, only constant tensors are supported, and they are not
considered to be exported.
}];
let arguments = (ins StrAttr:$sym_name, ElementsAttr:$value);
let results = (outs);
let printer = [{ return ::print$cppClass(p, *this); }];
let parser = [{ return ::parse$cppClass(parser, result); }];
}
def Npcomprt_GetGlobalOp : Npcomprt_Op<"get_global"> {
let summary = "Obtain a rank-erased memref pointing at the given global";
let description = [{
Obtain a rank-erased memref pointing at the given global.
TODO: As we define the runtime layer better, we should have fewer
entry points that return memrefs, or at least have a clearer separation
between the "memref world" and the "npcomprt world".
Something like forming IREE dispatch regions seems to be the missing thing:
- Everything inside the dispatch regions gets things marshaled from the
runtime (flow/hal/npcomprt) layer to/from memrefs in a clear way.
- Everything outside the dispatch regions purely uses the runtime
(flow/hal/npcomprt) data structures.
Globals should be one of the things that are purely runtime data structures,
rather than using memrefs. For now, using memrefs is simpler though.
}];
let arguments = (ins FlatSymbolRefAttr:$global);
let results = (outs AnyUnrankedMemRef:$memref);
let assemblyFormat = "$global attr-dict `:` type($memref)";
let verifier = "return ::verify$cppClass(*this);";
}
Rework e2e flow to use new "npcomprt" This ~totally reworks the existing "runtime" stuff to be more principled and usable, such as from Python. It's still not fully production-quality, mainly in the department of memory management (e.g. it currently leaks memory; we need to figure out "who frees memrefs" + the analysis and transformation needed to do that (maybe use upstream buffer allocation pass?)). The user API is in include/npcomp/runtime/UserAPI.h, though include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper. The stuff under {include,lib}/runtime is totally firewalled from the compiler and tiny (<6kB, though no attention has gone into optimizing that size). For example, we don't link in libSupport into the runtime, instead having our own bare bones replacements for basics like ArrayRef (the JITRuntime helps with bridging that gap, since it *can* depend on all common LLVM utilities). The overall features of npcomprt is that it exposes a module that with multiple function entry points. Each function has arguments and results that are tensor-valued, and npcomprt::Tensor is the runtime type that is used to interact with that (and a npcomprt::Ref<T> reference-counting wrapper is provided to wrap npcomprt::Tensor in the common case). From an implementation perspective, an npcomprt module at the LLVM/object/binary level exposes a single module descriptor struct that has pointers to other metadata (currently just a list of function metadata descriptors). All interactions with the npcomp runtime are keyed off of that module descriptor, including function lookups and dispatching. This is done to dodge platform ABI issues and also allow enough reflection to e.g. verify provided arguments. Most of the compiler-side work here was in LowerToNpcomprtABI and LowerToLLVM. Also, - Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting annoying to type the underscores/caps. - misc improvements to bash_helpers.sh
2020-07-09 08:15:40 +08:00
def Npcomprt_ModuleMetadataOp : Npcomprt_Op<"module_metadata", [
SingleBlockImplicitTerminator<"ModuleMetadataTerminatorOp">
]> {
let summary = "Global metadata for the module";
let description = [{
This op contains a region containing npcomprt.func_metadata ops,
which give information about the functions in the module. This allows
the module to be introspected when it is loaded, such as looking up
functions.
Future uses are checking how many results functions should have, or
what their argument types are expected to be to provide clean and safe
errors when invocations fail.
TODO: Verify that there should be no more than one of these ops in a
module.
This op is designed to hold a region, which makes it easy to convert to
a single LLVM global with a single conversion pattern.
}];
let arguments = (ins);
let results = (outs);
let regions = (region SizedRegion<1>:$metadatas);
let printer = [{ return ::print$cppClass(p, *this); }];
let parser = [{ return ::parse$cppClass(parser, result); }];
}
def Npcomprt_ModuleMetadataTerminatorOp
: Npcomprt_Op<"module_metadata_terminator",
[Terminator, HasParent<"ModuleMetadataOp">]> {
let summary = "Implicit terminator for ModuleMetadataOp's region";
let arguments = (ins);
let results = (outs);
let assemblyFormat = "attr-dict";
}
def Npcomprt_FuncMetadataOp
: Npcomprt_Op<"func_metadata", [HasParent<"ModuleMetadataOp">]> {
let summary = "Runtime metadata for a single func";
let description = [{
Runtime metadata for a single func.
TODO: Augment this with information for type/shape checking of arguments.
}];
let arguments = (ins
FlatSymbolRefAttr:$funcName,
I32Attr:$numInputs,
I32Attr:$numOutputs
);
let results = (outs);
let assemblyFormat = "attr-dict";
let verifier = [{ return ::verify(*this); }];
}
#endif // #ifndef NPCOMPRT_OPS