torch-mlir/lib/Conversion/TorchToStablehlo/GatherScatter.cpp

970 lines
38 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h"
#include "../PassDetail.h"
#include "PopulatePatterns.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "stablehlo/dialect/StablehloOps.h"
#include "torch-mlir/Conversion/TorchToStablehlo/StablehloLegalizeUtils.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
using namespace mlir::torch::torch_to_stablehlo;
namespace {
static Value createInitialValueForGatherScatterOp(Operation *op,
RankedTensorType constType,
PatternRewriter &rewriter) {
if (!constType.hasStaticShape()) {
return nullptr;
}
auto elementTy = constType.getElementType();
if (isa<AtenEmbeddingBagPaddingIdxOp>(op)) {
if (isa<mlir::FloatType>(elementTy)) {
auto constAttr = DenseElementsAttr::get(
constType, {APFloat::getZero(
cast<mlir::FloatType>(elementTy).getFloatSemantics(),
/*negative=*/false)});
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
constAttr);
} else if (isa<mlir::IntegerType>(elementTy) &&
elementTy.getIntOrFloatBitWidth() != 8) {
auto constAttr = DenseElementsAttr::get(
constType, {APInt::getZero(elementTy.getIntOrFloatBitWidth())});
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
constAttr);
}
}
op->emitError("unimplemented lowering in "
"createInitialValueForGatherScatterOp");
return nullptr;
}
Value gatherTensorAlongSingleAxis(PatternRewriter &rewriter, Operation *op,
Value input, Value indices, int64_t axis,
size_t dimSizeIndexBits) {
auto loc = op->getLoc();
Type intType = rewriter.getIntegerType(dimSizeIndexBits);
Value one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));
// sliceSizes
auto inputRankTy = dyn_cast<RankedTensorType>(input.getType());
auto inputRank = inputRankTy.getRank();
SmallVector<Value, 4> sliceSizes;
sliceSizes.reserve(inputRank);
for (int64_t r = 0; r < inputRank; ++r) {
if (r == axis) {
sliceSizes.push_back(one);
} else {
sliceSizes.push_back(rewriter.create<arith::IndexCastOp>(
loc, intType, rewriter.create<tensor::DimOp>(loc, input, r)));
}
}
auto sliceSizesTensor =
rewriter.create<tensor::FromElementsOp>(loc, sliceSizes);
// offsetDims
SmallVector<int64_t, 4> offsetDims;
offsetDims.reserve(inputRank);
for (int64_t r = 0; r < axis; ++r) {
offsetDims.push_back(r);
}
auto indicesRankTy = dyn_cast<RankedTensorType>(indices.getType());
auto indicesRank = indicesRankTy.getRank();
for (int64_t r = axis + 1; r < inputRank; ++r) {
offsetDims.push_back(r + indicesRank - 1);
}
// collapsedSliceDims
SmallVector<int64_t, 4> collapsedSliceDims(1, axis);
// startIndexMap
SmallVector<int64_t, 4> startIndexMap(1, axis);
// indexVecDim
int64_t indexVecDim = indicesRank;
auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get(
rewriter.getContext(),
/*offsetDims=*/offsetDims,
/*collapsedSliceDims=*/collapsedSliceDims,
/*operandBatchingDims=*/{},
/*startIndicesBatchingDims=*/{},
/*startIndexMap=*/startIndexMap,
/*indexVecDim=*/indexVecDim);
// outputShape = input.shape[:axis] + indices.shape +
// input.shape[axis + 1:]
auto inputShape = inputRankTy.getShape();
auto indicesShape = indicesRankTy.getShape();
SmallVector<int64_t, 4> outputShape(inputShape.begin(),
inputShape.begin() + axis);
outputShape.insert(outputShape.end(), indicesShape.begin(),
indicesShape.end());
outputShape.insert(outputShape.end(), inputShape.begin() + axis + 1,
inputShape.end());
// create output tensor type
auto outputTy =
RankedTensorType::get(outputShape, inputRankTy.getElementType());
return rewriter
.create<stablehlo::DynamicGatherOp>(loc, outputTy, input, indices,
sliceSizesTensor, dimsAttr)
.getResult();
}
template <typename OpTy, typename OpAdaptor>
LogicalResult prepareArgumentsForSlicingOp(OpTy op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
SmallVector<Value> &resultShape,
SmallVector<Value> &offsets,
SmallVector<Value> &strides) {
Location loc = op.getLoc();
auto input = adaptor.getSelf();
RankedTensorType inputType = cast<RankedTensorType>(input.getType());
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return op->emitError("unimplemented: dim is not constant");
int64_t inputRank = inputType.getRank();
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
Value dimSize = inputShape[dim];
Value torchTypeStart = op.getStart();
Value torchTypeEnd = op.getEnd();
Value builtinTypeStart = adaptor.getStart();
Value builtinTypeEnd = adaptor.getEnd();
if (isa<OptionalType>(torchTypeStart.getType()) ||
isa<OptionalType>(torchTypeEnd.getType()))
return rewriter.notifyMatchFailure(op, "unimplemented optional type arg");
int64_t step;
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) {
if (!isa<Torch::NoneType>(op.getStep().getType()))
return op->emitError("unimplemented: step is not constant");
step = 1;
}
Value start = toPositiveValidDim(rewriter, loc, torchTypeStart,
builtinTypeStart, zero, dimSize);
Value end = toPositiveValidDim(rewriter, loc, torchTypeEnd, builtinTypeEnd,
dimSize, dimSize);
// end >= start ? end : start
Value endSgeStart = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, end, start);
end = rewriter.create<arith::SelectOp>(loc, endSgeStart, end, start);
Value stepIndex = rewriter.create<arith::ConstantIndexOp>(loc, step);
// Slice logic: resultSize = floordiv(end - start + step - 1, step)
resultShape = getTensorSizes(rewriter, loc, input);
Value len = rewriter.create<arith::SubIOp>(loc, end, start);
Value resultSize = rewriter.create<arith::AddIOp>(loc, len, stepIndex);
resultSize = rewriter.create<arith::SubIOp>(loc, resultSize, one);
resultSize = rewriter.create<arith::FloorDivSIOp>(loc, resultSize, stepIndex);
resultShape[dim] = resultSize;
strides.resize(inputType.getRank(), one);
offsets.resize(inputType.getRank(), zero);
offsets[dim] = start;
strides[dim] = rewriter.create<arith::MulIOp>(loc, strides[dim], stepIndex);
return success();
}
} // namespace
namespace {
// A helper function used to generate stablehlo's ScatterIndices or
// GatherIndices from torch's indices, usually appear in torch ops, like
// aten.index.Tensor or aten.input_put A usage example is as follow: Input: [[1,
// 2, 3],
// [4, 5, 6],
// [7, 8, 9]]
// Indices[0]: [[0, 0, 0],
// [2, 2, 0]]
// Indices[1]: [[2],
// [1]]
// Step 1: broadcast indices tensors
// Indices[0]: [[0, 0, 0],
// [2, 2, 0]]
// Indices[1]: [[2, 2, 2],
// [1, 1, 1]]
// Step 2: concat index tensors at a unsqueezed -1 dimension.
// Indices: [[[0, 2], [0, 2], [0, 2]],
// [[2, 1], [2, 1], [0, 1]]]
FailureOr<Value> broadcastAndConcatIndices(Operation *op,
ConversionPatternRewriter &rewriter,
SmallVector<Value> indexTensors,
llvm::ArrayRef<int64_t> inputShape,
int &maxIndexRank) {
// Step 1: broadcast indices tensors
SmallVector<int64_t> indicesShape;
SmallVector<int64_t> expandShape;
SmallVector<int64_t> concatShape;
// concat index tensor into to indices tensor for concat
for (size_t i = 0; i < indexTensors.size(); i++) {
auto indexTensor = indexTensors[i];
auto indexTensorType = cast<RankedTensorType>(indexTensor.getType());
for (int64_t size : makeShapeTorchCompatible(indexTensorType.getShape())) {
if (size == kUnknownSize)
return failure();
}
maxIndexRank = std::max(maxIndexRank, (int)indexTensorType.getRank());
}
SmallVector<int64_t> refinedInputShape = makeShapeTorchCompatible(inputShape);
for (int64_t size : refinedInputShape) {
if (size == kUnknownSize) {
return failure();
}
}
for (int i = 0; i < maxIndexRank; i++) {
indicesShape.push_back(refinedInputShape[i]);
expandShape.push_back(refinedInputShape[i]);
concatShape.push_back(refinedInputShape[i]);
}
expandShape.push_back(1);
concatShape.push_back(indexTensors.size());
SmallVector<Value> broadcastedIndices;
2024-05-16 15:33:23 +08:00
Type indexElemTy = rewriter.getI64Type();
RankedTensorType bcastIndexType =
RankedTensorType::get(indicesShape, indexElemTy);
for (auto indexTensor : indexTensors) {
Value bcastVal =
hlo::promoteAndBroadcast(rewriter, indexTensor, bcastIndexType);
RankedTensorType reshapeType =
RankedTensorType::get(expandShape, indexElemTy);
bcastVal = rewriter.create<stablehlo::ReshapeOp>(op->getLoc(), reshapeType,
bcastVal);
broadcastedIndices.push_back(bcastVal);
}
// Step 2: concat index tensors at a unsqueezed -1 dimension.
Value finalIndexTensor = broadcastedIndices[0];
if (broadcastedIndices.size() > 1) {
RankedTensorType concatTy = RankedTensorType::get(concatShape, indexElemTy);
finalIndexTensor = rewriter.create<stablehlo::ConcatenateOp>(
op->getLoc(), concatTy, ValueRange(broadcastedIndices),
concatShape.size() - 1);
}
return finalIndexTensor;
}
} // namespace
// Ref:
// https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html
// padding_idx (int, optional)
// If specified, the entries at padding_idx do not contribute to the
// gradient; therefore, the embedding vector at padding_idx is not updated
// during training, i.e. it remains as a fixed “pad”.
// scale_grad_by_freq (boolean, optional)
// If given, this will scale gradients by the inverse of frequency of the
// words in the mini-batch. Default False.
// sparse (bool, optional)
// If True, gradient w.r.t. weight matrix will be a sparse tensor.
template <>
LogicalResult ConvertAtenOp<AtenEmbeddingOp>::matchAndRewrite(
AtenEmbeddingOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto weight = adaptor.getWeight();
auto weightTy = cast<RankedTensorType>(weight.getType());
if (!weightTy)
return op.emitError("only ranked tensor types are supported");
int64_t padding_idx;
if (!matchPattern(op.getPaddingIdx(), m_TorchConstantInt(&padding_idx)))
return rewriter.notifyMatchFailure(
op, "only constant padding_idx is currently supported");
bool scale_grad_by_freq;
if (!matchPattern(op.getScaleGradByFreq(),
m_TorchConstantBool(&scale_grad_by_freq)))
return rewriter.notifyMatchFailure(
op, "only constant scale_grad_by_freq is currently supported");
if (scale_grad_by_freq)
return rewriter.notifyMatchFailure(
op, "scale gradients is currently not supported");
bool sparse;
if (!matchPattern(op.getSparse(), m_TorchConstantBool(&sparse)))
return rewriter.notifyMatchFailure(
op, "only constant sparse is currently supported");
if (sparse)
return rewriter.notifyMatchFailure(
op, "sparse gradients is currently not supported");
Value output = gatherTensorAlongSingleAxis(
rewriter, op, weight, adaptor.getIndices(), 0, options.dimSizeIndexBits);
rewriter.replaceOpWithNewOp<stablehlo::ConvertOp>(
op, getTypeConverter()->convertType(op.getType()), output);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenEmbeddingBagPaddingIdxOp>::matchAndRewrite(
AtenEmbeddingBagPaddingIdxOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
Value weight = adaptor.getWeight();
Value indices = adaptor.getIndices();
Value offsets = adaptor.getOffsets();
auto weightTy = cast<RankedTensorType>(weight.getType());
if (weightTy && weightTy.hasStaticShape() && weightTy.getRank() != 2)
return rewriter.notifyMatchFailure(
op, "weight must be rank 2 tensor with static shapes");
auto indicesTy = cast<RankedTensorType>(indices.getType());
if (indicesTy && indicesTy.hasStaticShape() && indicesTy.getRank() != 1)
return rewriter.notifyMatchFailure(
op, "indices must be a vector with static shapes");
auto offsetsTy = cast<RankedTensorType>(offsets.getType());
if (offsetsTy && offsetsTy.getRank() != 1 && offsetsTy.hasStaticShape() &&
offsetsTy.getShape()[0] == 1)
return rewriter.notifyMatchFailure(
op, "offsets must be a vector with static shape equal to 1");
if (!isa<Torch::NoneType>(op.getPaddingIdx().getType()))
return rewriter.notifyMatchFailure(
op, "Unimplemented: padding_idx should be none");
if (!isa<Torch::NoneType>(op.getPerSampleWeights().getType()))
return rewriter.notifyMatchFailure(
op, "Unimplemented: per_sample_weights should be none");
bool includeLastOffset;
if (!matchPattern(op.getIncludeLastOffset(),
m_TorchConstantBool(&includeLastOffset))) {
return rewriter.notifyMatchFailure(
op, "include_last_offset is expected to be a constant boolean value.");
}
if (includeLastOffset)
return rewriter.notifyMatchFailure(
op, "include_last_offset is currently not supported");
bool scaleGradByFreq;
if (!matchPattern(op.getScaleGradByFreq(),
m_TorchConstantBool(&scaleGradByFreq)))
return rewriter.notifyMatchFailure(
op, "only constant scale_grad_by_freq is currently supported");
if (scaleGradByFreq)
return rewriter.notifyMatchFailure(
op, "scale gradients is currently not supported");
bool sparse;
if (!matchPattern(op.getSparse(), m_TorchConstantBool(&sparse)))
return rewriter.notifyMatchFailure(
op, "only constant sparse is currently supported");
if (sparse)
return rewriter.notifyMatchFailure(
op, "sparse gradients is currently not supported");
int64_t modeInt;
if (!matchPattern(op.getMode(), m_TorchConstantInt(&modeInt))) {
return rewriter.notifyMatchFailure(
op, "mode is expected to be a constant integer value.");
}
if (modeInt != torch_upstream::EmbeddingBagMode::MODE_SUM) {
return rewriter.notifyMatchFailure(op,
"Unimplemented: Mean and Max mode are "
"not supported yet for EmbeddingBag.");
}
const auto &options =
ConvertAtenOp<AtenEmbeddingBagPaddingIdxOp>::getOptions();
auto weightDimSizes =
*hlo::getDimSizesOfTensor(rewriter, op, weight, options.dimSizeIndexBits);
auto indicesDimSizes = *hlo::getDimSizesOfTensor(rewriter, op, indices,
options.dimSizeIndexBits);
auto offsetsDimSizes = *hlo::getDimSizesOfTensor(rewriter, op, offsets,
options.dimSizeIndexBits);
Value gatherOutput = gatherTensorAlongSingleAxis(
rewriter, op, weight, indices, 0, options.dimSizeIndexBits);
Type elementTy = weightTy.getElementType();
auto constType = RankedTensorType::get({}, elementTy);
Value initValue =
createInitialValueForGatherScatterOp(op, constType, rewriter);
if (!initValue)
return failure();
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
Bump stablehlo to openxla/stablehlo@fd52182f76cadb82f2064fe5fc49a4fb4347a826 (#2821) With the recent LLVM integrate and changes from https://github.com/llvm/llvm-project/pull/78260, we hit this build error in Stablehlo (which is quite old). ``` external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1020:14: error: no member named 'startRootUpdate' in 'mlir::PatternRewriter' rewriter.startRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1026:16: error: no member named 'finalizeRootUpdate' in 'mlir::PatternRewriter' rewriter.finalizeRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1029:16: error: no member named 'cancelRootUpdate' in 'mlir::PatternRewriter' rewriter.cancelRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1108:14: error: no member named 'updateRootInPlace' in 'mlir::PatternRewriter' rewriter.updateRootInPlace(op->getParentOp(), [&]() { return; }); ~~~~~~~~ ^ 4 errors generated. Target @torch-mlir//:torch-mlir-opt failed to build ``` I'm still puzzled as to how this didn't fail with the CMake merge gating CI (do we not test Stablehlo builds/tests?). In any case, bumping our submodule to https://github.com/openxla/stablehlo/pull/1918 fixes it. It exposes a new failing lit test in TorchToStablehlo though, that I have looped stablehlo developers into ([here](https://discord.com/channels/999073994483433573/999074539138990131/1201235845391331419)). ``` bazel run @torch-mlir//test/Conversion:TorchToStablehlo/scatter.mlir.test ...external/torch-mlir/test/Conversion/TorchToStablehlo/scatter.mlir within split at <stdin>:1 offset :33:8: error: unexpected error: Expects non-empty reduction block for type inference %0 = torch.aten.scatter.src %arg0, %int0, %arg1, %arg2 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.vtensor<[?,?],si64>, !torch.vtensor<[?,?],si64> -> !torch.vtensor<[?,?],si64> ^ LLVM ERROR: Failed to infer result type(s). ``` Bazel CI: https://github.com/sjain-stanford/torch-mlir/actions/runs/7732673480/job/21083102228
2024-02-01 06:21:17 +08:00
op.getLoc(), gatherOutput, initValue, rewriter.getDenseI64ArrayAttr({0}),
elementTy);
Region &region = stablehloReduceOp.getBody();
Block &block = region.emplaceBlock();
auto blockArgumentTy = RankedTensorType::get({}, elementTy);
block.addArgument(blockArgumentTy, op->getLoc());
block.addArgument(blockArgumentTy, op->getLoc());
auto *firstArgument = block.args_begin();
auto secondArgument = block.args_rbegin();
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&block);
Value addResult = rewriter.create<stablehlo::AddOp>(
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
rewriter.create<stablehlo::ReturnOp>(op->getLoc(), addResult);
}
auto outShapeInfo =
hlo::getDimSizesOfTensor(rewriter, op, weight, options.dimSizeIndexBits);
if (failed(outShapeInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to get dimension sizes of the input");
}
auto outShapeVec = *outShapeInfo;
auto one = rewriter.create<mlir::arith::ConstantOp>(
op->getLoc(), rewriter.getIntegerAttr(
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
outShapeVec[0] = one;
auto outShapeTensor =
rewriter.create<mlir::tensor::FromElementsOp>(op->getLoc(), outShapeVec);
auto resultA = rewriter.create<stablehlo::DynamicReshapeOp>(
loc, getTypeConverter()->convertType(op.getType(0)),
stablehloReduceOp.getResult(0), outShapeTensor);
RankedTensorType resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(1).getType()));
Value resultB =
createInitialValueForGatherScatterOp(op, resultType, rewriter);
if (!resultB)
return failure();
resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(2).getType()));
Value resultC =
createInitialValueForGatherScatterOp(op, resultType, rewriter);
if (!resultC)
return failure();
resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(3).getType()));
Value resultD =
createInitialValueForGatherScatterOp(op, resultType, rewriter);
if (!resultD)
return failure();
rewriter.replaceOp(op, {resultA, resultB, resultC, resultD});
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenIndexSelectOp>::matchAndRewrite(
AtenIndexSelectOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto self = adaptor.getSelf();
auto selfTy = cast<RankedTensorType>(self.getType());
if (!selfTy)
return op.emitError("only ranked tensor types are supported");
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "only constant dim is currently supported");
int64_t inputRank = selfTy.getRank();
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
Value output = gatherTensorAlongSingleAxis(
rewriter, op, self, adaptor.getIndex(), dim, options.dimSizeIndexBits);
rewriter.replaceOpWithNewOp<stablehlo::ConvertOp>(
op, getTypeConverter()->convertType(op.getType()), output);
return success();
}
// AtenGatherOp
template <>
LogicalResult ConvertAtenOp<AtenGatherOp>::matchAndRewrite(
AtenGatherOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
Value input = adaptor.getSelf();
Value index = adaptor.getIndex();
auto inputType = cast<RankedTensorType>(input.getType());
auto indexType = cast<RankedTensorType>(index.getType());
auto indexElemType = indexType.getElementType();
if (indexType.getRank() != inputType.getRank()) {
return op.emitError("`index` and `input` param should have the same rank");
}
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
return rewriter.notifyMatchFailure(
op, "only constant int `dim` param supported");
}
dim = toPositiveDim(dim, inputType.getRank());
if (!isValidDim(dim, inputType.getRank())) {
return rewriter.notifyMatchFailure(op, "invalid `dim` param detected");
}
bool sparseGrad = false;
if (!matchPattern(op.getSparseGrad(), m_TorchConstantBool(&sparseGrad))) {
return rewriter.notifyMatchFailure(
op, "only constant boolean `sparse_grad` param supported");
}
auto options = getOptions();
auto indexShapeInfo =
hlo::getDimSizesOfTensor(rewriter, op, index, options.dimSizeIndexBits);
if (failed(indexShapeInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to get dim sizes of `index` param");
}
auto intType = rewriter.getIntegerType(options.dimSizeIndexBits);
auto one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));
auto toConcatIndexShapeValueVec = *indexShapeInfo;
toConcatIndexShapeValueVec.push_back(one);
auto toConcatIndexShape =
rewriter.create<tensor::FromElementsOp>(loc, toConcatIndexShapeValueVec);
auto indexShape = indexType.getShape();
SmallVector<int64_t> toConcatIndexShapeVec(indexShape.begin(),
indexShape.end());
toConcatIndexShapeVec.push_back(1);
RankedTensorType toConcatIndexType =
RankedTensorType::get(toConcatIndexShapeVec, indexElemType);
SmallVector<Value> toConcat;
for (int64_t i = 0; i < inputType.getRank(); ++i) {
if (i == dim) {
toConcat.push_back(rewriter.create<stablehlo::DynamicReshapeOp>(
loc, toConcatIndexType, index, toConcatIndexShape));
} else {
toConcat.push_back(rewriter.create<stablehlo::DynamicIotaOp>(
loc, toConcatIndexType, toConcatIndexShape,
rewriter.getI64IntegerAttr(i)));
}
}
auto gatherIndicies = rewriter.create<stablehlo::ConcatenateOp>(
loc, toConcat, static_cast<uint64_t>(inputType.getRank()));
SmallVector<int64_t> sliceSizes(inputType.getRank(), 1);
int64_t indexVecDim = inputType.getRank();
SmallVector<int64_t> collapsedDims;
SmallVector<int64_t> startIndexMap;
for (int64_t i = 0; i < inputType.getRank(); ++i) {
collapsedDims.push_back(i);
startIndexMap.push_back(i);
}
auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get(
rewriter.getContext(),
/*offsetDims=*/{},
/*collapsedSliceDims=*/collapsedDims,
/*operandBatchingDims=*/{},
/*startIndicesBatchingDims=*/{},
/*startIndexMap=*/startIndexMap,
/*indexVecDim=*/indexVecDim);
rewriter.replaceOpWithNewOp<stablehlo::GatherOp>(
op, input, gatherIndicies, dimsAttr,
Bump stablehlo to openxla/stablehlo@fd52182f76cadb82f2064fe5fc49a4fb4347a826 (#2821) With the recent LLVM integrate and changes from https://github.com/llvm/llvm-project/pull/78260, we hit this build error in Stablehlo (which is quite old). ``` external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1020:14: error: no member named 'startRootUpdate' in 'mlir::PatternRewriter' rewriter.startRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1026:16: error: no member named 'finalizeRootUpdate' in 'mlir::PatternRewriter' rewriter.finalizeRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1029:16: error: no member named 'cancelRootUpdate' in 'mlir::PatternRewriter' rewriter.cancelRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1108:14: error: no member named 'updateRootInPlace' in 'mlir::PatternRewriter' rewriter.updateRootInPlace(op->getParentOp(), [&]() { return; }); ~~~~~~~~ ^ 4 errors generated. Target @torch-mlir//:torch-mlir-opt failed to build ``` I'm still puzzled as to how this didn't fail with the CMake merge gating CI (do we not test Stablehlo builds/tests?). In any case, bumping our submodule to https://github.com/openxla/stablehlo/pull/1918 fixes it. It exposes a new failing lit test in TorchToStablehlo though, that I have looped stablehlo developers into ([here](https://discord.com/channels/999073994483433573/999074539138990131/1201235845391331419)). ``` bazel run @torch-mlir//test/Conversion:TorchToStablehlo/scatter.mlir.test ...external/torch-mlir/test/Conversion/TorchToStablehlo/scatter.mlir within split at <stdin>:1 offset :33:8: error: unexpected error: Expects non-empty reduction block for type inference %0 = torch.aten.scatter.src %arg0, %int0, %arg1, %arg2 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.vtensor<[?,?],si64>, !torch.vtensor<[?,?],si64> -> !torch.vtensor<[?,?],si64> ^ LLVM ERROR: Failed to infer result type(s). ``` Bazel CI: https://github.com/sjain-stanford/torch-mlir/actions/runs/7732673480/job/21083102228
2024-02-01 06:21:17 +08:00
rewriter.getDenseI64ArrayAttr(sliceSizes));
return success();
}
// AtenSliceScatterOp
template <>
LogicalResult ConvertAtenOp<AtenSliceScatterOp>::matchAndRewrite(
AtenSliceScatterOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
const TypeConverter *typeConverter = getTypeConverter();
auto input = adaptor.getSelf();
RankedTensorType resultType = cast<RankedTensorType>(
typeConverter->convertType(op->getResult(0).getType()));
SmallVector<Value> resultShape;
SmallVector<Value> offsets;
SmallVector<Value> strides;
if (failed(prepareArgumentsForSlicingOp<AtenSliceScatterOp,
AtenSliceScatterOpAdaptor>(
op, adaptor, rewriter, resultShape, offsets, strides))) {
return failure();
}
Value src = adaptor.getSrc();
auto srcType = cast<RankedTensorType>(src.getType());
int64_t srcRank = srcType.getRank();
SmallVector<int64_t> srcAbstractSizes(srcRank, kUnknownSize);
auto abstractSrcType = RankedTensorType::get(
makeShapeLLVMCompatible(srcAbstractSizes), srcType.getElementType());
Value abstractSrc =
rewriter.create<tensor::CastOp>(loc, abstractSrcType, src);
Value result = rewriter.create<tensor::InsertSliceOp>(
loc, abstractSrc, input, offsets, resultShape, strides);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
template <typename AtenOpT, int reduceType>
class ConvertAtenScatterOp : public ConvertAtenOp<AtenOpT> {
public:
using ConvertAtenOp<AtenOpT>::ConvertAtenOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value input = adaptor.getSelf();
Value index = adaptor.getIndex();
Value src = adaptor.getSrc();
auto inputType = cast<RankedTensorType>(input.getType());
auto indexType = cast<RankedTensorType>(index.getType());
auto srcType = cast<RankedTensorType>(src.getType());
auto indexElemType = indexType.getElementType();
if (indexType.getRank() != inputType.getRank() ||
inputType.getRank() != srcType.getRank()) {
return op.emitError(
"`index`, `input` and `src` param should have the same rank");
}
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
return rewriter.notifyMatchFailure(
op, "only constant int `dim` param supported");
}
dim = toPositiveDim(dim, inputType.getRank());
if (!isValidDim(dim, inputType.getRank())) {
return rewriter.notifyMatchFailure(op, "invalid `dim` param detected");
}
auto options = this->getOptions();
auto indexShapeInfo =
hlo::getDimSizesOfTensor(rewriter, op, index, options.dimSizeIndexBits);
if (failed(indexShapeInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to get dim sizes of `index` param");
}
auto intType = rewriter.getIntegerType(options.dimSizeIndexBits);
// slice src tensor to have the same shape bound of index tensor in the
// leading dimensions. PyTorch has guaranteed that src tensor size will not
// be smaller than that of index tensor. REF:
// https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_.html#torch.Tensor.scatter_
auto zero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 0));
auto one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));
SmallVector<Value> sliceIndicies(srcType.getRank(), zero);
SmallVector<Value> sliceStrides(srcType.getRank(), one);
auto sliceIndiciesValue =
rewriter.create<tensor::FromElementsOp>(loc, sliceIndicies);
auto sliceStridesValue =
rewriter.create<tensor::FromElementsOp>(loc, sliceStrides);
auto sliceLimitIndiciesValue =
rewriter.create<tensor::FromElementsOp>(loc, *indexShapeInfo);
auto newSrcType =
RankedTensorType::get(indexType.getShape(), srcType.getElementType());
src = rewriter.create<stablehlo::RealDynamicSliceOp>(
loc, newSrcType, src, sliceIndiciesValue, sliceLimitIndiciesValue,
sliceStridesValue);
// generate scatter indicies for stablehlo::Scatter op.
auto toConcatIndexShapeValueVec = *indexShapeInfo;
toConcatIndexShapeValueVec.push_back(one);
auto toConcatIndexShape = rewriter.create<tensor::FromElementsOp>(
loc, toConcatIndexShapeValueVec);
auto indexShape = indexType.getShape();
SmallVector<int64_t> toConcatIndexShapeVec(indexShape.begin(),
indexShape.end());
toConcatIndexShapeVec.push_back(1);
RankedTensorType toConcatIndexType =
RankedTensorType::get(toConcatIndexShapeVec, indexElemType);
SmallVector<Value> toConcat;
for (int64_t i = 0; i < inputType.getRank(); ++i) {
if (i == dim) {
toConcat.push_back(rewriter.create<stablehlo::DynamicReshapeOp>(
loc, toConcatIndexType, index, toConcatIndexShape));
} else {
toConcat.push_back(rewriter.create<stablehlo::DynamicIotaOp>(
loc, toConcatIndexType, toConcatIndexShape,
rewriter.getI64IntegerAttr(i)));
}
}
auto scatterIndicies = rewriter.create<stablehlo::ConcatenateOp>(
loc, toConcat, static_cast<uint64_t>(inputType.getRank()));
SmallVector<int64_t> sliceSizes(inputType.getRank(), 1);
// generate ScatterDimensionNumbers for stablehlo::Scatter op.
int64_t indexVecDim = inputType.getRank();
SmallVector<int64_t> scatterDimOperandDimMap;
SmallVector<int64_t> insertedWindowDims;
for (int64_t i = 0; i < inputType.getRank(); ++i) {
scatterDimOperandDimMap.push_back(i);
insertedWindowDims.push_back(i);
}
auto scatterDimensionNumbers = stablehlo::ScatterDimensionNumbersAttr::get(
rewriter.getContext(),
/*updateWindowDims=*/{},
/*insertedWindowDims=*/insertedWindowDims,
/*inputBatchingDims=*/{},
/*scatterIndicesBatchingDims=*/{},
/*scatterDimsToOperandDim=*/scatterDimOperandDimMap,
/*indexVectorDim=*/indexVecDim);
auto stablehloScatterOp = rewriter.create<stablehlo::ScatterOp>(
loc, inputType, input, scatterIndicies, src, scatterDimensionNumbers,
false, false);
// config update computation function: just return the element from src.
Block &block = stablehloScatterOp.getUpdateComputation().emplaceBlock();
// add block arguments
auto blockArgumentType =
RankedTensorType::get({}, inputType.getElementType());
block.addArgument(blockArgumentType, loc);
block.addArgument(blockArgumentType, loc);
auto *lhsArg = block.args_begin();
auto *rhsArg = std::next(lhsArg);
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&block);
if (reduceType == 0) {
rewriter.create<stablehlo::ReturnOp>(loc, *rhsArg);
} else if (reduceType == 1) {
Value res = rewriter.create<stablehlo::AddOp>(loc, blockArgumentType,
*lhsArg, *rhsArg);
rewriter.create<stablehlo::ReturnOp>(loc, res);
}
}
rewriter.replaceOp(op, stablehloScatterOp.getResults());
return success();
}
};
// AtenIndexTensorOp
// Convert to StableHlo::GatherOp.
template <>
LogicalResult ConvertAtenOp<AtenIndexTensorHackedTwinOp>::matchAndRewrite(
AtenIndexTensorHackedTwinOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
Value input = adaptor.getSelf();
auto inputTensorType = cast<RankedTensorType>(input.getType());
auto outType =
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
auto outShape = outType.getShape();
Value indexList = op.getIndices();
SmallVector<Value> indicesTorchType;
if (!getListConstructElements(indexList, indicesTorchType))
return op.emitError(
"unimplemented: the tensor list is not from list construct");
auto indexTensors = getTypeConvertedValues(rewriter, loc, getTypeConverter(),
indicesTorchType);
int maxIndexRank = -1;
auto gatherIndicesInfo = broadcastAndConcatIndices(op, rewriter, indexTensors,
outShape, maxIndexRank);
if (failed(gatherIndicesInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to generate broadcasted indices");
}
auto gatherIndices = *gatherIndicesInfo;
int64_t numIndicesDim = indexTensors.size();
int64_t indexVecDim = maxIndexRank;
SmallVector<int64_t> offsetDims;
SmallVector<int64_t> collapsedDims;
SmallVector<int64_t> startIndexMap;
for (int64_t i = 0; i < numIndicesDim; ++i) {
collapsedDims.push_back(i);
startIndexMap.push_back(i);
}
for (int64_t i = numIndicesDim; i < inputTensorType.getRank(); i++) {
offsetDims.push_back(i + maxIndexRank - numIndicesDim);
}
auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get(
rewriter.getContext(),
/*offsetDims=*/offsetDims,
/*collapsedSliceDims=*/collapsedDims,
/*operandBatchingDims=*/{},
/*startIndicesBatchingDims=*/{},
/*startIndexMap=*/startIndexMap,
/*indexVecDim=*/indexVecDim);
SmallVector<int64_t> sliceSizes;
auto inputShape = makeShapeTorchCompatible(inputTensorType.getShape());
for (int64_t i = 0; i < inputTensorType.getRank(); ++i) {
if (i < numIndicesDim) {
sliceSizes.push_back(1);
} else {
sliceSizes.push_back(inputShape[i]);
}
}
rewriter.replaceOpWithNewOp<stablehlo::GatherOp>(
op, outType, input, gatherIndices, dimsAttr,
Bump stablehlo to openxla/stablehlo@fd52182f76cadb82f2064fe5fc49a4fb4347a826 (#2821) With the recent LLVM integrate and changes from https://github.com/llvm/llvm-project/pull/78260, we hit this build error in Stablehlo (which is quite old). ``` external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1020:14: error: no member named 'startRootUpdate' in 'mlir::PatternRewriter' rewriter.startRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1026:16: error: no member named 'finalizeRootUpdate' in 'mlir::PatternRewriter' rewriter.finalizeRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1029:16: error: no member named 'cancelRootUpdate' in 'mlir::PatternRewriter' rewriter.cancelRootUpdate(op); ~~~~~~~~ ^ external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1108:14: error: no member named 'updateRootInPlace' in 'mlir::PatternRewriter' rewriter.updateRootInPlace(op->getParentOp(), [&]() { return; }); ~~~~~~~~ ^ 4 errors generated. Target @torch-mlir//:torch-mlir-opt failed to build ``` I'm still puzzled as to how this didn't fail with the CMake merge gating CI (do we not test Stablehlo builds/tests?). In any case, bumping our submodule to https://github.com/openxla/stablehlo/pull/1918 fixes it. It exposes a new failing lit test in TorchToStablehlo though, that I have looped stablehlo developers into ([here](https://discord.com/channels/999073994483433573/999074539138990131/1201235845391331419)). ``` bazel run @torch-mlir//test/Conversion:TorchToStablehlo/scatter.mlir.test ...external/torch-mlir/test/Conversion/TorchToStablehlo/scatter.mlir within split at <stdin>:1 offset :33:8: error: unexpected error: Expects non-empty reduction block for type inference %0 = torch.aten.scatter.src %arg0, %int0, %arg1, %arg2 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.vtensor<[?,?],si64>, !torch.vtensor<[?,?],si64> -> !torch.vtensor<[?,?],si64> ^ LLVM ERROR: Failed to infer result type(s). ``` Bazel CI: https://github.com/sjain-stanford/torch-mlir/actions/runs/7732673480/job/21083102228
2024-02-01 06:21:17 +08:00
rewriter.getDenseI64ArrayAttr(sliceSizes));
return success();
}
// AtenIndexPutHackedTwinOP
// Convert to stablehlo::ScatterOp
template <>
LogicalResult ConvertAtenOp<AtenIndexPutHackedTwinOp>::matchAndRewrite(
AtenIndexPutHackedTwinOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
Value input = adaptor.getSelf();
Value values = adaptor.getValues();
auto outType =
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
auto inputType = cast<RankedTensorType>(input.getType());
int64_t inputRank = inputType.getRank();
auto valuesType = cast<RankedTensorType>(values.getType());
auto valuesShape = valuesType.getShape();
bool accumulate;
if (!matchPattern(op.getAccumulate(), m_TorchConstantBool(&accumulate))) {
return rewriter.notifyMatchFailure(op,
"accumulate should be a constant bool");
}
Value indexList = op.getIndices();
SmallVector<Value> indicesTorchType;
if (!getListConstructElements(indexList, indicesTorchType))
return op.emitError(
"unimplemented: the tensor list is not from list construct");
auto indexTensors = getTypeConvertedValues(rewriter, loc, getTypeConverter(),
indicesTorchType);
int maxIndexRank = -1;
auto scatterIndicesInfo = broadcastAndConcatIndices(
op, rewriter, indexTensors, valuesShape, maxIndexRank);
if (failed(scatterIndicesInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to generate broadcasted indices");
}
auto scatterIndices = *scatterIndicesInfo;
// create stablehlo::ScatterOp
int64_t indexVecDim = maxIndexRank;
SmallVector<int64_t> scatterDimOperandDimMap;
SmallVector<int64_t> insertedWindowDims;
SmallVector<int64_t> updateWindowDims;
for (int64_t i = 0; i < maxIndexRank; ++i) {
scatterDimOperandDimMap.push_back(i);
insertedWindowDims.push_back(i);
}
for (int64_t i = maxIndexRank; i < inputRank; ++i) {
updateWindowDims.push_back(i);
}
llvm::outs() << "maxIndexRank: " << maxIndexRank << "\n";
auto scatterDimensionNumbers = stablehlo::ScatterDimensionNumbersAttr::get(
rewriter.getContext(),
/*updateWindowDims=*/updateWindowDims,
/*insertedWindowDims=*/insertedWindowDims,
/*inputBatchingDims=*/{},
/*scatterIndicesBatchingDims=*/{},
/*scatterDimsToOperandDim=*/scatterDimOperandDimMap,
/*indexVectorDim=*/indexVecDim);
auto stablehloScatterOp = rewriter.create<stablehlo::ScatterOp>(
loc, outType, input, scatterIndices, values, scatterDimensionNumbers,
false, false);
// configure update computation function.
Block &block = stablehloScatterOp.getUpdateComputation().emplaceBlock();
// add block arguments
auto blockArgumentType =
RankedTensorType::get({}, inputType.getElementType());
block.addArgument(blockArgumentType, loc);
block.addArgument(blockArgumentType, loc);
auto *lhsArg = block.args_begin();
auto *rhsArg = std::next(lhsArg);
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&block);
if (!accumulate) {
rewriter.create<stablehlo::ReturnOp>(loc, *rhsArg);
} else {
Value out = rewriter.create<stablehlo::AddOp>(loc, blockArgumentType,
*lhsArg, *rhsArg);
rewriter.create<stablehlo::ReturnOp>(loc, out);
}
}
rewriter.replaceOp(op, stablehloScatterOp.getResults());
return success();
}
void mlir::torch::torch_to_stablehlo::
populateGatherScatterOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, const TorchToStablehloOptions &options) {
MLIRContext *context = patterns.getContext();
#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context, options)
INSERT_ATENOP_PATTERN(AtenEmbeddingOp);
INSERT_ATENOP_PATTERN(AtenEmbeddingBagPaddingIdxOp);
INSERT_ATENOP_PATTERN(AtenIndexSelectOp);
INSERT_ATENOP_PATTERN(AtenGatherOp);
INSERT_ATENOP_PATTERN(AtenSliceScatterOp);
INSERT_ATENOP_PATTERN(AtenIndexTensorHackedTwinOp);
INSERT_ATENOP_PATTERN(AtenIndexPutHackedTwinOp);
#undef INSERT_ATENOP_PATTERN
#define INSERT_ATEN_SCATTER_PATTERN(AtenOp, reduceType) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenScatterOp<AtenOp, reduceType>>(typeConverter, \
context, options)
INSERT_ATEN_SCATTER_PATTERN(AtenScatterSrcOp, 0); // 0 for None reduce op
INSERT_ATEN_SCATTER_PATTERN(AtenScatterAddOp, 1); // 1 for Add reduce op
#undef INSERT_ATEN_SCATTER_PATTERN
}