torch-mlir/test/Conversion/TorchToLinalg/pooling.mlir

76 lines
4.8 KiB
MLIR
Raw Normal View History

// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
Add aten.pool_max3d support to torch-to-linalg (#2735) Added verification logic to the abstract_interpreter_lib_gen.py Also made some unit tests Initially, I thought we can use `linalg::pooling_ndhwc_max` to help implement this problem. However, on a 5-dimensional matrix it does the pooling on dimensions (2, 3, 4) which is not what we want. We want pooling on dimensions (3, 4, 5). To achieve this, we would need to lower our code using the `linalg` dialect. Turns out the pooling code in `linalg` looks like this. ``` func @max_pooling_ncdhw(%I: memref<?x?x?x?x?xf32>, %K: memref<3xindex>, %O: memref<?x?x?x?x?xf32>, %strides: memref<3xindex>, %dilations: memref<3xindex>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %N = memref.dim %I, %c0 : memref<?x?x?x?x?xf32> %C = memref.dim %I, %c1 : memref<?x?x?x?x?xf32> %D = memref.dim %I, 2 : memref<?x?x?x?x?xf32> %H = memref.dim %I, 3 : memref<?x?x?x?x?xf32> %W = memref.dim %I, 4 : memref<?x?x?x?x?xf32> %kernel_d = memref.load %K[%c0] : memref<3xindex> %kernel_h = memref.load %K[%c1] : memref<3xindex> %kernel_w = memref.load %K[2] : memref<3xindex> %stride_d = memref.load %strides[%c0] : memref<3xindex> %stride_h = memref.load %strides[%c1] : memref<3xindex> %stride_w = memref.load %strides[2] : memref<3xindex> %dilation_d = memref.load %dilations[%c0] : memref<3xindex> %dilation_h = memref.load %dilations[%c1] : memref<3xindex> %dilation_w = memref.load %dilations[2] : memref<3xindex> linalg.generic { indexing_maps = [ affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d * %stride_d + kd * %dilation_d, h * %stride_h + kh * %dilation_h, w * %stride_w + kw * %dilation_w)>, // Map for input tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (kd, kh, kw)>, // Map for kernel tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d, h, w)> // Map for output tensor ], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"], doc = "3D Max Pooling NCDHW with Strides, Dilations, and Kernel Size" } ins(%I, %K : memref<?x?x?x?x?xf32>, memref<3xindex>) outs(%O : memref<?x?x?x?x?xf32>) { ^bb0(%input_elem: f32, %kernel_elem: index, %output_elem: f32): %max_val = arith.maxf %input_elem, %output_elem : f32 linalg.yield %max_val : f32 } return } ``` This was implemented based on it's source code with the adjustments mentioned above: https://github.com/llvm/llvm-project/blob/4ca1b5e094280ef1af40412e3cfcb62dc3cf15bc/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml#L5647 Issues related to this can be found here https://github.com/nod-ai/SHARK-Turbine/issues/324
2024-01-19 23:39:46 +08:00
// CHECK-LABEL: func @forward_max_pool2d
func.func @forward_max_pool2d(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
%int1 = torch.constant.int 1
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
%int6 = torch.constant.int 6
%int7 = torch.constant.int 7
%int8 = torch.constant.int 8
%false = torch.constant.bool false
// CHECK: %[[C1:.*]] = torch_c.to_i64 %int1
// CHECK: %[[C2:.*]] = torch_c.to_i64 %int2
// CHECK: %[[NEUTRAL:.*]] = arith.constant 0xFF800000 : f32
// CHECK: %[[PADDED:.*]] = tensor.pad %{{.*}} low[0, 0, 5, 6] high[0, 0, 5, 6]
// CHECK: %[[OUT:.*]] = linalg.fill ins(%[[NEUTRAL]] : f32) outs(%{{.*}} : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[T1:.*]] = arith.index_cast %[[C1]] : i64 to index
// CHECK: %[[T2:.*]] = arith.index_cast %[[C2]] : i64 to index
// CHECK: %[[INIT:.*]] = tensor.empty(%[[T1]], %[[T2]]) : tensor<?x?xf32>
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
// CHECK: linalg.pooling_nchw_max {dilations = dense<[7, 8]> : vector<2xi64>, strides = dense<[3, 4]> : vector<2xi64>} ins(%[[PADDED]], %[[INIT]] : tensor<?x?x?x?xf32>, tensor<?x?xf32>) outs(%[[OUT]] : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
%kernel_size = torch.prim.ListConstruct %int1, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%stride = torch.prim.ListConstruct %int3, %int4 : (!torch.int, !torch.int) -> !torch.list<int>
%padding = torch.prim.ListConstruct %int5, %int6 : (!torch.int, !torch.int) -> !torch.list<int>
%dilation = torch.prim.ListConstruct %int7, %int8 : (!torch.int, !torch.int) -> !torch.list<int>
%4 = torch.aten.max_pool2d %arg0, %kernel_size, %stride, %padding, %dilation, %false : !torch.vtensor<[?,?,?,?],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
return %4 : !torch.vtensor<[?,?,?,?],f32>
}
Add aten.pool_max3d support to torch-to-linalg (#2735) Added verification logic to the abstract_interpreter_lib_gen.py Also made some unit tests Initially, I thought we can use `linalg::pooling_ndhwc_max` to help implement this problem. However, on a 5-dimensional matrix it does the pooling on dimensions (2, 3, 4) which is not what we want. We want pooling on dimensions (3, 4, 5). To achieve this, we would need to lower our code using the `linalg` dialect. Turns out the pooling code in `linalg` looks like this. ``` func @max_pooling_ncdhw(%I: memref<?x?x?x?x?xf32>, %K: memref<3xindex>, %O: memref<?x?x?x?x?xf32>, %strides: memref<3xindex>, %dilations: memref<3xindex>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %N = memref.dim %I, %c0 : memref<?x?x?x?x?xf32> %C = memref.dim %I, %c1 : memref<?x?x?x?x?xf32> %D = memref.dim %I, 2 : memref<?x?x?x?x?xf32> %H = memref.dim %I, 3 : memref<?x?x?x?x?xf32> %W = memref.dim %I, 4 : memref<?x?x?x?x?xf32> %kernel_d = memref.load %K[%c0] : memref<3xindex> %kernel_h = memref.load %K[%c1] : memref<3xindex> %kernel_w = memref.load %K[2] : memref<3xindex> %stride_d = memref.load %strides[%c0] : memref<3xindex> %stride_h = memref.load %strides[%c1] : memref<3xindex> %stride_w = memref.load %strides[2] : memref<3xindex> %dilation_d = memref.load %dilations[%c0] : memref<3xindex> %dilation_h = memref.load %dilations[%c1] : memref<3xindex> %dilation_w = memref.load %dilations[2] : memref<3xindex> linalg.generic { indexing_maps = [ affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d * %stride_d + kd * %dilation_d, h * %stride_h + kh * %dilation_h, w * %stride_w + kw * %dilation_w)>, // Map for input tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (kd, kh, kw)>, // Map for kernel tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d, h, w)> // Map for output tensor ], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"], doc = "3D Max Pooling NCDHW with Strides, Dilations, and Kernel Size" } ins(%I, %K : memref<?x?x?x?x?xf32>, memref<3xindex>) outs(%O : memref<?x?x?x?x?xf32>) { ^bb0(%input_elem: f32, %kernel_elem: index, %output_elem: f32): %max_val = arith.maxf %input_elem, %output_elem : f32 linalg.yield %max_val : f32 } return } ``` This was implemented based on it's source code with the adjustments mentioned above: https://github.com/llvm/llvm-project/blob/4ca1b5e094280ef1af40412e3cfcb62dc3cf15bc/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml#L5647 Issues related to this can be found here https://github.com/nod-ai/SHARK-Turbine/issues/324
2024-01-19 23:39:46 +08:00
// -----
// CHECK: #map = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2 * 2 + d5 * 3, d3 * 2 + d6 * 3, d4 * 2 + d7 * 3)>
// CHECK: #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d5, d6, d7)>
// CHECK: #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func @forward_max_pool3d
func.func @forward_max_pool3d(%arg0: !torch.vtensor<[?,?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?,?],f32> {
%kernel_size1 = torch.constant.int 8
%kernel_size2 = torch.constant.int 8
%kernel_size3 = torch.constant.int 8
%stride1 = torch.constant.int 2
%stride2 = torch.constant.int 2
%stride3 = torch.constant.int 2
%padding1 = torch.constant.int 4
%padding2 = torch.constant.int 4
%padding3 = torch.constant.int 4
%dilation1 = torch.constant.int 3
%dilation2 = torch.constant.int 3
%dilation3 = torch.constant.int 3
Add aten.pool_max3d support to torch-to-linalg (#2735) Added verification logic to the abstract_interpreter_lib_gen.py Also made some unit tests Initially, I thought we can use `linalg::pooling_ndhwc_max` to help implement this problem. However, on a 5-dimensional matrix it does the pooling on dimensions (2, 3, 4) which is not what we want. We want pooling on dimensions (3, 4, 5). To achieve this, we would need to lower our code using the `linalg` dialect. Turns out the pooling code in `linalg` looks like this. ``` func @max_pooling_ncdhw(%I: memref<?x?x?x?x?xf32>, %K: memref<3xindex>, %O: memref<?x?x?x?x?xf32>, %strides: memref<3xindex>, %dilations: memref<3xindex>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %N = memref.dim %I, %c0 : memref<?x?x?x?x?xf32> %C = memref.dim %I, %c1 : memref<?x?x?x?x?xf32> %D = memref.dim %I, 2 : memref<?x?x?x?x?xf32> %H = memref.dim %I, 3 : memref<?x?x?x?x?xf32> %W = memref.dim %I, 4 : memref<?x?x?x?x?xf32> %kernel_d = memref.load %K[%c0] : memref<3xindex> %kernel_h = memref.load %K[%c1] : memref<3xindex> %kernel_w = memref.load %K[2] : memref<3xindex> %stride_d = memref.load %strides[%c0] : memref<3xindex> %stride_h = memref.load %strides[%c1] : memref<3xindex> %stride_w = memref.load %strides[2] : memref<3xindex> %dilation_d = memref.load %dilations[%c0] : memref<3xindex> %dilation_h = memref.load %dilations[%c1] : memref<3xindex> %dilation_w = memref.load %dilations[2] : memref<3xindex> linalg.generic { indexing_maps = [ affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d * %stride_d + kd * %dilation_d, h * %stride_h + kh * %dilation_h, w * %stride_w + kw * %dilation_w)>, // Map for input tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (kd, kh, kw)>, // Map for kernel tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d, h, w)> // Map for output tensor ], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"], doc = "3D Max Pooling NCDHW with Strides, Dilations, and Kernel Size" } ins(%I, %K : memref<?x?x?x?x?xf32>, memref<3xindex>) outs(%O : memref<?x?x?x?x?xf32>) { ^bb0(%input_elem: f32, %kernel_elem: index, %output_elem: f32): %max_val = arith.maxf %input_elem, %output_elem : f32 linalg.yield %max_val : f32 } return } ``` This was implemented based on it's source code with the adjustments mentioned above: https://github.com/llvm/llvm-project/blob/4ca1b5e094280ef1af40412e3cfcb62dc3cf15bc/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml#L5647 Issues related to this can be found here https://github.com/nod-ai/SHARK-Turbine/issues/324
2024-01-19 23:39:46 +08:00
%false = torch.constant.bool false
%kernel_size = torch.prim.ListConstruct %kernel_size1, %kernel_size2, %kernel_size3 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%stride = torch.prim.ListConstruct %stride1, %stride2, %stride3 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%padding = torch.prim.ListConstruct %padding1, %padding2, %padding3 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%dilation = torch.prim.ListConstruct %dilation1, %dilation2, %dilation3 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
Add aten.pool_max3d support to torch-to-linalg (#2735) Added verification logic to the abstract_interpreter_lib_gen.py Also made some unit tests Initially, I thought we can use `linalg::pooling_ndhwc_max` to help implement this problem. However, on a 5-dimensional matrix it does the pooling on dimensions (2, 3, 4) which is not what we want. We want pooling on dimensions (3, 4, 5). To achieve this, we would need to lower our code using the `linalg` dialect. Turns out the pooling code in `linalg` looks like this. ``` func @max_pooling_ncdhw(%I: memref<?x?x?x?x?xf32>, %K: memref<3xindex>, %O: memref<?x?x?x?x?xf32>, %strides: memref<3xindex>, %dilations: memref<3xindex>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %N = memref.dim %I, %c0 : memref<?x?x?x?x?xf32> %C = memref.dim %I, %c1 : memref<?x?x?x?x?xf32> %D = memref.dim %I, 2 : memref<?x?x?x?x?xf32> %H = memref.dim %I, 3 : memref<?x?x?x?x?xf32> %W = memref.dim %I, 4 : memref<?x?x?x?x?xf32> %kernel_d = memref.load %K[%c0] : memref<3xindex> %kernel_h = memref.load %K[%c1] : memref<3xindex> %kernel_w = memref.load %K[2] : memref<3xindex> %stride_d = memref.load %strides[%c0] : memref<3xindex> %stride_h = memref.load %strides[%c1] : memref<3xindex> %stride_w = memref.load %strides[2] : memref<3xindex> %dilation_d = memref.load %dilations[%c0] : memref<3xindex> %dilation_h = memref.load %dilations[%c1] : memref<3xindex> %dilation_w = memref.load %dilations[2] : memref<3xindex> linalg.generic { indexing_maps = [ affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d * %stride_d + kd * %dilation_d, h * %stride_h + kh * %dilation_h, w * %stride_w + kw * %dilation_w)>, // Map for input tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (kd, kh, kw)>, // Map for kernel tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d, h, w)> // Map for output tensor ], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"], doc = "3D Max Pooling NCDHW with Strides, Dilations, and Kernel Size" } ins(%I, %K : memref<?x?x?x?x?xf32>, memref<3xindex>) outs(%O : memref<?x?x?x?x?xf32>) { ^bb0(%input_elem: f32, %kernel_elem: index, %output_elem: f32): %max_val = arith.maxf %input_elem, %output_elem : f32 linalg.yield %max_val : f32 } return } ``` This was implemented based on it's source code with the adjustments mentioned above: https://github.com/llvm/llvm-project/blob/4ca1b5e094280ef1af40412e3cfcb62dc3cf15bc/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml#L5647 Issues related to this can be found here https://github.com/nod-ai/SHARK-Turbine/issues/324
2024-01-19 23:39:46 +08:00
%4 = torch.aten.max_pool3d %arg0, %kernel_size, %stride, %padding, %dilation, %false : !torch.vtensor<[?,?,?,?,?],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool -> !torch.vtensor<[?,?,?,?,?],f32>
// CHECK: %[[MIN_VALUE:.*]] = arith.constant 0xFF800000 : f32
// CHECK: %[[PADDED_INPUT_TENSOR:.*]] = tensor.pad %{{.*}} low[0, 0, 4, 4, 4] high[0, 0, 4, 4, 4] {
// CHECK-NEXT: ^bb0(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index):
// CHECK-NEXT: tensor.yield %[[MIN_VALUE:.*]] : f32
// CHECK: } : tensor<?x?x?x?x?xf32> to tensor<?x?x?x?x?xf32>
Add aten.pool_max3d support to torch-to-linalg (#2735) Added verification logic to the abstract_interpreter_lib_gen.py Also made some unit tests Initially, I thought we can use `linalg::pooling_ndhwc_max` to help implement this problem. However, on a 5-dimensional matrix it does the pooling on dimensions (2, 3, 4) which is not what we want. We want pooling on dimensions (3, 4, 5). To achieve this, we would need to lower our code using the `linalg` dialect. Turns out the pooling code in `linalg` looks like this. ``` func @max_pooling_ncdhw(%I: memref<?x?x?x?x?xf32>, %K: memref<3xindex>, %O: memref<?x?x?x?x?xf32>, %strides: memref<3xindex>, %dilations: memref<3xindex>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %N = memref.dim %I, %c0 : memref<?x?x?x?x?xf32> %C = memref.dim %I, %c1 : memref<?x?x?x?x?xf32> %D = memref.dim %I, 2 : memref<?x?x?x?x?xf32> %H = memref.dim %I, 3 : memref<?x?x?x?x?xf32> %W = memref.dim %I, 4 : memref<?x?x?x?x?xf32> %kernel_d = memref.load %K[%c0] : memref<3xindex> %kernel_h = memref.load %K[%c1] : memref<3xindex> %kernel_w = memref.load %K[2] : memref<3xindex> %stride_d = memref.load %strides[%c0] : memref<3xindex> %stride_h = memref.load %strides[%c1] : memref<3xindex> %stride_w = memref.load %strides[2] : memref<3xindex> %dilation_d = memref.load %dilations[%c0] : memref<3xindex> %dilation_h = memref.load %dilations[%c1] : memref<3xindex> %dilation_w = memref.load %dilations[2] : memref<3xindex> linalg.generic { indexing_maps = [ affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d * %stride_d + kd * %dilation_d, h * %stride_h + kh * %dilation_h, w * %stride_w + kw * %dilation_w)>, // Map for input tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (kd, kh, kw)>, // Map for kernel tensor affine_map<(n, c, d, h, w, kd, kh, kw) -> (n, c, d, h, w)> // Map for output tensor ], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"], doc = "3D Max Pooling NCDHW with Strides, Dilations, and Kernel Size" } ins(%I, %K : memref<?x?x?x?x?xf32>, memref<3xindex>) outs(%O : memref<?x?x?x?x?xf32>) { ^bb0(%input_elem: f32, %kernel_elem: index, %output_elem: f32): %max_val = arith.maxf %input_elem, %output_elem : f32 linalg.yield %max_val : f32 } return } ``` This was implemented based on it's source code with the adjustments mentioned above: https://github.com/llvm/llvm-project/blob/4ca1b5e094280ef1af40412e3cfcb62dc3cf15bc/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml#L5647 Issues related to this can be found here https://github.com/nod-ai/SHARK-Turbine/issues/324
2024-01-19 23:39:46 +08:00
// CHECK: %[[OUTPUT_TENSOR:.*]] = linalg.fill ins(%[[MIN_VALUE:.*]] : f32) outs(%{{.*}} : tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32>
// CHECK: %[[MAX_3D_POOL:.*]] = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%[[PADDED_INPUT_TENSOR:.*]], %{{.*}} : tensor<?x?x?x?x?xf32>, tensor<?x?x?xf32>) outs(%[[OUTPUT_TENSOR:.*]] : tensor<?x?x?x?x?xf32>) {
// CHECK-NEXT: ^bb0(%[[CURRENT_VALUE:.*]]: f32, %[[KERNEL:.*]]: f32, %[[ACC_OUT:.*]]: f32):
// CHECK-NEXT: %[[MAXF:.*]] = arith.maximumf %[[CURRENT_VALUE:.*]], %[[ACC_OUT:.*]] : f32
// CHECK-NEXT: linalg.yield %[[MAXF:.*]] : f32
// CHECK: } -> tensor<?x?x?x?x?xf32>
return %4 : !torch.vtensor<[?,?,?,?,?],f32>
}