torch-mlir/setup.py

169 lines
6.9 KiB
Python
Raw Normal View History

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
# Script for generating the torch-mlir wheel.
# ```
# $ python setup.py bdist_wheel
# ```
#
# It is recommended to build with Ninja and ccache. To do so, set environment
# variables by prefixing to above invocations:
# ```
# CMAKE_GENERATOR=Ninja CMAKE_C_COMPILER_LAUNCHER=ccache CMAKE_CXX_COMPILER_LAUNCHER=ccache
# ```
#
# On CIs, it is often advantageous to re-use/control the CMake build directory.
# This can be set with the TORCH_MLIR_CMAKE_BUILD_DIR env var.
# Additionally, the TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT env var will
# prevent this script from attempting to build the directory, and will simply
# use the (presumed already built) directory as-is.
#
# The package version can be set with the TORCH_MLIR_PYTHON_PACKAGE_VERSION
# environment variable. For example, this can be "20220330.357" for a snapshot
# release on 2022-03-30 with build number 357.
#
# Implementation notes:
# The contents of the wheel is just the contents of the `python_packages`
# directory that our CMake build produces. We go through quite a bit of effort
# on the CMake side to organize that directory already, so we avoid duplicating
# that here, and just package up its contents.
import os
import shutil
import subprocess
import sys
import sysconfig
from distutils.command.build import build as _build
from distutils.sysconfig import get_python_inc
from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext
from setuptools.command.build_py import build_py
PACKAGE_VERSION = os.environ.get("TORCH_MLIR_PYTHON_PACKAGE_VERSION") or "0.0.1"
# If true, enable LTC build by default
TORCH_MLIR_ENABLE_LTC_DEFAULT = True
2023-02-14 04:21:06 +08:00
TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS = int(os.environ.get('TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS', False))
if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS:
import torch
# Build phase discovery is unreliable. Just tell it what phases to run.
class CustomBuild(_build):
def run(self):
self.run_command("build_py")
self.run_command("build_ext")
self.run_command("build_scripts")
class CMakeBuild(build_py):
def run(self):
target_dir = self.build_lib
cmake_build_dir = os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR")
if not cmake_build_dir:
cmake_build_dir = os.path.abspath(
os.path.join(target_dir, "..", "cmake_build"))
python_package_dir = os.path.join(cmake_build_dir,
"tools", "torch-mlir", "python_packages",
"torch_mlir")
if not os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT"):
src_dir = os.path.abspath(os.path.dirname(__file__))
llvm_dir = os.path.join(
src_dir, "externals", "llvm-project", "llvm")
enable_ltc = int(os.environ.get('TORCH_MLIR_ENABLE_LTC', TORCH_MLIR_ENABLE_LTC_DEFAULT))
cmake_args = [
f"-DCMAKE_BUILD_TYPE=Release",
f"-DPython3_EXECUTABLE={sys.executable}",
f"-DPython3_FIND_VIRTUALENV=ONLY",
f"-DLLVM_TARGETS_TO_BUILD=host",
f"-DMLIR_ENABLE_BINDINGS_PYTHON=ON",
f"-DLLVM_ENABLE_PROJECTS=mlir",
f"-DLLVM_ENABLE_ZSTD=OFF",
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
f"-DLLVM_EXTERNAL_PROJECTS=torch-mlir",
f"-DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR={src_dir}",
# Optimization options for building wheels.
f"-DCMAKE_VISIBILITY_INLINES_HIDDEN=ON",
f"-DCMAKE_C_VISIBILITY_PRESET=hidden",
f"-DCMAKE_CXX_VISIBILITY_PRESET=hidden",
f"-DTORCH_MLIR_ENABLE_LTC={'ON' if enable_ltc else 'OFF'}",
2023-02-14 04:21:06 +08:00
f"-DTORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS={'ON' if TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else 'OFF'}",
]
os.makedirs(cmake_build_dir, exist_ok=True)
cmake_cache_file = os.path.join(cmake_build_dir, "CMakeCache.txt")
if os.path.exists(cmake_cache_file):
os.remove(cmake_cache_file)
# NOTE: With repeated builds for different Python versions, the
# prior version binaries will continue to accumulate. IREE uses
# a separate install step and cleans the install directory to
# keep this from happening. That is the most robust. Here we just
# delete the directory where we build native extensions to keep
# this from happening but still take advantage of most of the
# build cache.
mlir_libs_dir = os.path.join(python_package_dir, "torch_mlir", "_mlir_libs")
if os.path.exists(mlir_libs_dir):
print(f"Removing _mlir_mlibs dir to force rebuild: {mlir_libs_dir}")
shutil.rmtree(mlir_libs_dir)
else:
print(f"Not removing _mlir_libs dir (does not exist): {mlir_libs_dir}")
subprocess.check_call(["cmake", llvm_dir] +
cmake_args, cwd=cmake_build_dir)
subprocess.check_call(["cmake",
"--build", ".",
CI: prepare CI for ccache updates for MSVC/Windows (#2120) This patch, by itself, doesn't fix caching on Windows, but once a new release of ccache is available, caching for Windows builds should start working again (validated by building ccache from source and using it with LLVM builds). Ccache rejects caching when either the `/Zi` or `/ZI` flags are used during compilation on Windows, since these flags tell the compiler to embed debug information in a PDB file (separate from the object file produced by the compiler). In particular, our CI builds add the `/Zi` flag, making ccache mark these compiler invocations as uncacheable. But what caused our CI to add debug flags, especially when we specified `-DCMAKE_BUILD_TYPE=Release`? On Windows, unless we specify the `--config Release` flag during the CMake build step, CMake assumes a debug build. So all this while, we had been producing debug builds of torch-mlir for every PR! No doubt it took so long to build the Windows binaries. The reason for having to specify the configuration during the _build_ step (as opposed to the _configure_ step) of CMake on Windows is that CMake's Visual Studio generators will produce _both_ Release and Debug profiles during the CMake configure step (thus requiring a build-time value that tells CMake whether to build in Release or Debug mode). Luckily, on Linux and macOS, the `--config` flag seems to be simply ignored, instead of causing build errors. Strangely, based on cursory tests, it seems like on Windows we need to specify the Relase configuration as both `-DCMAKE_BUILD_TYPE=Release` as well as `--config Release`. Dropping either made my build switch to a Debug configuration. Additionally, there is a bug in ccache v4.8 (although this is addressed in trunk) that causes ccache to reject caching if the compiler invocation includes any flag that starts with `/Z`, including /`Zc`, which is added by LLVM's HandleLLVMOptions.cmake and which isn't related to debug info or PDB files. The next release of ccache should include the fix, which is to reject caching only for `/Zi` and `/ZI` flags and not all flags that start with `/Z`. As a side note, debugging this problem was possible because of ccache's log file, which is enabled by: `ccache --set-config="log_file=log.txt"`.
2023-05-13 01:45:01 +08:00
"--config", "Release",
"--target", "TorchMLIRPythonModules"],
cwd=cmake_build_dir)
if os.path.exists(target_dir):
shutil.rmtree(target_dir, ignore_errors=False, onerror=None)
shutil.copytree(python_package_dir,
target_dir,
symlinks=False)
class CMakeExtension(Extension):
def __init__(self, name, sourcedir=""):
Extension.__init__(self, name, sources=[])
self.sourcedir = os.path.abspath(sourcedir)
class NoopBuildExtension(build_ext):
def build_extension(self, ext):
pass
2022-12-07 23:01:55 +08:00
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
setup(
name="torch-mlir" if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else "torch-mlir-core",
version=f"{PACKAGE_VERSION}",
author="Sean Silva",
author_email="silvasean@google.com",
description="First-class interop between PyTorch and MLIR",
2022-12-07 23:01:55 +08:00
long_description=long_description,
long_description_content_type="text/markdown",
include_package_data=True,
cmdclass={
"build": CustomBuild,
"built_ext": NoopBuildExtension,
"build_py": CMakeBuild,
},
ext_modules=[
CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"),
] if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else [CMakeExtension("torch_mlir._mlir_libs._torchMlir")],
install_requires=["numpy", "packaging"] + (
2023-02-14 04:21:06 +08:00
[f"torch=={torch.__version__}".split("+", 1)[0], ] if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else []),
zip_safe=False,
)