torch-mlir/frontends/pytorch/examples/torchscript_tanh_e2e.py

50 lines
1.4 KiB
Python
Raw Normal View History

# -*- Python -*-
# This file is licensed under a pytorch-style license
# See frontends/pytorch/LICENSE for license information.
import typing
import torch
import torch_mlir
import npcomp
Add support for compiling through IREE. Recommended review order: - Changes in frontends/pytorch/examples/ - Changes in python/npcomp/compiler/pytorch/backend/ - Boilerplate for the `npcomp-iree-backend-lower-linkage` pass. This change separates out a `npcomp.compiler.pytorch.backend.frontend_lowering` module that does the common lowering for all backends. The individual compiler backends `npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely defined "TCP + scalar code" IR mix that will be formalized in the future as the interface to codegen backends. This also required adding a small pass `npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto functions, and layering that into the frontend flow. The pass doesn't require a C++-level dependency on IREE, which is nice for now. TBD how we are going to handle lists (we hope we can get away with sneakerneting some td files and relying on loose IR compatibility). Running through IREE requires the ability to import `iree.compiler` and `iree.runtime`, which can be obtained as follows: ``` python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200 PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/" ``` This patch makes it painfully clear that we don't have any e2e testing harness to really plug into, and also don't have a usable Python API to our compiler stack (something usable in a jupyter notebook). That will be addressed in subsequent commits. We've been flying by the seat of our pants with this `examples` directory that isn't subject to any kind of testing or real usability concerns.
2021-04-09 04:05:16 +08:00
from npcomp.compiler.pytorch.backend import refjit, frontend_lowering
from npcomp.compiler.utils import logging
import test_utils
#logging.enable()
# RUN: %PYTHON %s | npcomp-opt | FileCheck %s
mb = torch_mlir.ModuleBuilder()
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.tanh(x)
test_module = TestModule()
class_annotator = torch_mlir.ClassAnnotator()
recursivescriptmodule = torch.jit.script(test_module)
torch.jit.save(recursivescriptmodule, '/tmp/foo.pt')
class_annotator.exportNone(recursivescriptmodule._c._type())
class_annotator.exportPath(recursivescriptmodule._c._type(), ['forward'])
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
class_annotator.annotateArgs(recursivescriptmodule._c._type(), ['forward'], [
None,
([2, 3, -1], torch.float32)
])
# TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule.
mb.import_module(recursivescriptmodule._c, class_annotator)
#mb.module.operation.print()
backend = refjit.CompilerBackend()
Add support for compiling through IREE. Recommended review order: - Changes in frontends/pytorch/examples/ - Changes in python/npcomp/compiler/pytorch/backend/ - Boilerplate for the `npcomp-iree-backend-lower-linkage` pass. This change separates out a `npcomp.compiler.pytorch.backend.frontend_lowering` module that does the common lowering for all backends. The individual compiler backends `npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely defined "TCP + scalar code" IR mix that will be formalized in the future as the interface to codegen backends. This also required adding a small pass `npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto functions, and layering that into the frontend flow. The pass doesn't require a C++-level dependency on IREE, which is nice for now. TBD how we are going to handle lists (we hope we can get away with sneakerneting some td files and relying on loose IR compatibility). Running through IREE requires the ability to import `iree.compiler` and `iree.runtime`, which can be obtained as follows: ``` python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200 PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/" ``` This patch makes it painfully clear that we don't have any e2e testing harness to really plug into, and also don't have a usable Python API to our compiler stack (something usable in a jupyter notebook). That will be addressed in subsequent commits. We've been flying by the seat of our pants with this `examples` directory that isn't subject to any kind of testing or real usability concerns.
2021-04-09 04:05:16 +08:00
compiled = backend.compile(frontend_lowering.lower_object_graph(mb.module))
jit_module = backend.load(compiled)
torch.manual_seed(0)
input = torch.rand(2, 3, 1)
test_utils.compare_outputs(test_module.forward, jit_module.forward, input)