[torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.
I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`
The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.
Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.
Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
out, which should be resolved in a subsequent change.
2021-09-10 03:24:10 +08:00
|
|
|
// RUN: torch-mlir-opt -torch-globalize-object-graph -split-input-file %s | FileCheck %s
|
2021-02-18 03:28:51 +08:00
|
|
|
|
2024-01-26 06:24:13 +08:00
|
|
|
// Check that linkage names consist of the dotted path from the root.
|
2021-02-18 03:28:51 +08:00
|
|
|
|
Rework how global slot initializers work.
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:
```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
%0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
%1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
torch.initialize.global_slots [
@tensor(%0 : !torch.tensor)
@list(%1 : !torch.list<tensor>)
]
}
```
This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.
Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
- Moving torchMlirAdjustStaticInformation for sharing with C++ code.
- EraseModuleInitializer pass
To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.
This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).
Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
2022-07-14 02:45:56 +08:00
|
|
|
// CHECK-LABEL: torch.global_slot.module_initializer {
|
|
|
|
// CHECK: %[[FLOAT:.*]] = torch.constant.float 4.200000e+01
|
|
|
|
// CHECK: torch.initialize.global_slots [
|
|
|
|
// CHECK: @m.float(%[[FLOAT]] : !torch.float)
|
|
|
|
// CHECK: ]
|
2021-02-26 07:54:51 +08:00
|
|
|
// CHECK: }
|
Rework how global slot initializers work.
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:
```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
%0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
%1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
torch.initialize.global_slots [
@tensor(%0 : !torch.tensor)
@list(%1 : !torch.list<tensor>)
]
}
```
This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.
Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
- Moving torchMlirAdjustStaticInformation for sharing with C++ code.
- EraseModuleInitializer pass
To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.
This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).
Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
2022-07-14 02:45:56 +08:00
|
|
|
// CHECK-LABEL: torch.global_slot @m.float : !torch.float
|
2021-02-18 03:28:51 +08:00
|
|
|
|
|
|
|
|
|
|
|
torch.class_type @child {
|
2021-06-17 23:24:31 +08:00
|
|
|
torch.attr "float" : !torch.float
|
2021-02-18 03:28:51 +08:00
|
|
|
}
|
|
|
|
torch.class_type @parent {
|
|
|
|
torch.attr "m" : !torch.nn.Module<"child">
|
|
|
|
}
|
|
|
|
|
2021-06-16 03:42:51 +08:00
|
|
|
%c42 = torch.constant.float 42.0
|
2021-02-18 03:28:51 +08:00
|
|
|
%child = torch.nn_module {
|
2021-06-17 23:24:31 +08:00
|
|
|
torch.slot "float", %c42 : !torch.float
|
2021-02-18 03:28:51 +08:00
|
|
|
} : !torch.nn.Module<"child">
|
|
|
|
%parent = torch.nn_module {
|
|
|
|
torch.slot "m", %child : !torch.nn.Module<"child">
|
|
|
|
} : !torch.nn.Module<"parent">
|
2022-07-12 09:07:24 +08:00
|
|
|
|
|
|
|
func.func private @ensure_all_slots_are_used(%arg0: !torch.nn.Module<"child">) {
|
|
|
|
%0 = torch.prim.GetAttr %arg0["float"] : !torch.nn.Module<"child"> -> !torch.float
|
|
|
|
return
|
|
|
|
}
|