torch-mlir/e2e_testing/main.py

143 lines
6.2 KiB
Python
Raw Normal View History

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import argparse
import re
import sys
from torch_mlir_e2e_test.framework import run_tests
from torch_mlir_e2e_test.reporting import report_results
from torch_mlir_e2e_test.registry import GLOBAL_TEST_REGISTRY
# Available test configs.
from torch_mlir_e2e_test.configs import (
LazyTensorCoreTestConfig,
LinalgOnTensorsBackendTestConfig,
MhloBackendTestConfig,
NativeTorchTestConfig,
TorchScriptTestConfig,
TosaBackendTestConfig,
EagerModeTestConfig,
TorchDynamoTestConfig,
)
from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import RefBackendLinalgOnTensorsBackend
from torch_mlir_e2e_test.mhlo_backends.linalg_on_tensors import LinalgOnTensorsMhloBackend
from torch_mlir_e2e_test.tosa_backends.linalg_on_tensors import LinalgOnTensorsTosaBackend
from .xfail_sets import REFBACKEND_XFAIL_SET, MHLO_PASS_SET, TOSA_PASS_SET, EAGER_MODE_XFAIL_SET, LTC_XFAIL_SET, TORCHDYNAMO_XFAIL_SET
# Import tests to register them in the global registry.
from torch_mlir_e2e_test.test_suite import register_all_tests
register_all_tests()
def _get_argparse():
config_choices = ['native_torch', 'torchscript', 'refbackend', 'mhlo', 'tosa', 'eager_mode', 'lazy_tensor_core', 'torchdynamo']
parser = argparse.ArgumentParser(description='Run torchscript e2e tests.')
parser.add_argument('-c', '--config',
choices=config_choices,
default='refbackend',
help=f'''
Meaning of options:
"refbackend": run through torch-mlir's RefBackend.
"mhlo": run through torch-mlir's default MHLO backend.
"tosa": run through torch-mlir's default TOSA backend.
"native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration).
"torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly).
"eager_mode": run through torch-mlir's eager mode frontend, using RefBackend for execution.
"lazy_tensor_core": run the model through the Lazy Tensor Core frontend and execute the traced graph.
"torchdynamo": run the model through the TorchDynamo frontend and execute the graph using RefBackend.
''')
parser.add_argument('-f', '--filter', default='.*', help='''
Regular expression specifying which tests to include in this run.
''')
parser.add_argument('-v', '--verbose',
default=False,
action='store_true',
help='report test results with additional detail')
parser.add_argument('-s', '--sequential',
default=False,
action='store_true',
help='''Run tests sequentially rather than in parallel.
This can be useful for debugging, since it runs the tests in the same process,
which make it easier to attach a debugger or get a stack trace.''')
parser.add_argument('--crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed',
metavar="TEST", type=str, nargs='+',
help='A set of tests to not attempt to run, since they crash and cannot be XFAILed.')
return parser
def main():
args = _get_argparse().parse_args()
all_test_unique_names = set(
test.unique_name for test in GLOBAL_TEST_REGISTRY)
# Find the selected config.
if args.config == 'refbackend':
config = LinalgOnTensorsBackendTestConfig(RefBackendLinalgOnTensorsBackend())
xfail_set = REFBACKEND_XFAIL_SET
if args.config == 'tosa':
config = TosaBackendTestConfig(LinalgOnTensorsTosaBackend())
xfail_set = all_test_unique_names - TOSA_PASS_SET
if args.config == 'mhlo':
config = MhloBackendTestConfig(LinalgOnTensorsMhloBackend())
xfail_set = all_test_unique_names - MHLO_PASS_SET
elif args.config == 'native_torch':
config = NativeTorchTestConfig()
xfail_set = {}
elif args.config == 'torchscript':
config = TorchScriptTestConfig()
xfail_set = {}
elif args.config == 'eager_mode':
config = EagerModeTestConfig()
xfail_set = EAGER_MODE_XFAIL_SET
elif args.config == 'lazy_tensor_core':
config = LazyTensorCoreTestConfig()
xfail_set = LTC_XFAIL_SET
elif args.config == 'torchdynamo':
config = TorchDynamoTestConfig()
xfail_set = TORCHDYNAMO_XFAIL_SET
do_not_attempt = set(args.crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed or [])
available_tests = [test for test in GLOBAL_TEST_REGISTRY if test.unique_name not in do_not_attempt]
if args.crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed is not None:
for arg in args.crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed:
if arg not in all_test_unique_names:
print(f'ERROR: --crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed argument "{arg}" is not a valid test name')
sys.exit(1)
# Find the selected tests, and emit a diagnostic if none are found.
tests = [
test for test in available_tests
if re.match(args.filter, test.unique_name)
]
if len(tests) == 0:
print(
f'ERROR: the provided filter {args.filter!r} does not match any tests'
)
print('The available tests are:')
for test in available_tests:
print(test.unique_name)
sys.exit(1)
# Run the tests.
results = run_tests(tests, config, args.sequential, args.verbose)
# Report the test results.
failed = report_results(results, xfail_set, args.verbose)
sys.exit(1 if failed else 0)
def _suppress_warnings():
import warnings
# Ignore warning due to Python bug:
# https://stackoverflow.com/questions/4964101/pep-3118-warning-when-using-ctypes-array-as-numpy-array
warnings.filterwarnings("ignore",
message="A builtin ctypes object gave a PEP3118 format string that does not match its itemsize")
if __name__ == '__main__':
_suppress_warnings()
main()