mirror of https://github.com/llvm/torch-mlir
126 lines
5.1 KiB
C++
126 lines
5.1 KiB
C++
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
// Also available under a BSD-style license. See LICENSE.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "torch-mlir/Conversion/TorchConversionToMLProgram/TorchConversionToMLProgram.h"
|
||
|
|
||
|
#include "../PassDetail.h"
|
||
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
||
|
#include "mlir/Dialect/MLProgram/IR/MLProgram.h"
|
||
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||
|
#include "mlir/IR/Builders.h"
|
||
|
#include "mlir/IR/BuiltinAttributes.h"
|
||
|
#include "mlir/IR/BuiltinTypes.h"
|
||
|
#include "mlir/IR/MLIRContext.h"
|
||
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
||
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
|
||
|
|
||
|
using namespace mlir;
|
||
|
using namespace mlir::torch;
|
||
|
using namespace mlir::torch::Torch;
|
||
|
using namespace mlir::torch::TorchConversion;
|
||
|
|
||
|
static constexpr StringRef getSeedGobalVarName() { return "global_seed"; }
|
||
|
|
||
|
// Declare a tensor<i64> global variable for the seed.
|
||
|
static void createGlobalVariableForSeed(OpBuilder &b, ModuleOp module) {
|
||
|
b.setInsertionPointToStart(module.getBody());
|
||
|
Type elemTy = b.getI64Type();
|
||
|
auto tensorType = RankedTensorType::get({}, elemTy);
|
||
|
b.create<ml_program::GlobalOp>(
|
||
|
UnknownLoc::get(b.getContext()),
|
||
|
/*sym_name=*/getSeedGobalVarName(),
|
||
|
/*type=*/tensorType,
|
||
|
/*is_mutable=*/true,
|
||
|
/*value=*/DenseIntElementsAttr::get(tensorType, {APInt(64, 0)}),
|
||
|
/*sym_visibility=*/b.getStringAttr("private"));
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
class ConvertGetNextSeedOp : public OpConversionPattern<GetNextSeedOp> {
|
||
|
public:
|
||
|
using OpConversionPattern::OpConversionPattern;
|
||
|
LogicalResult
|
||
|
matchAndRewrite(GetNextSeedOp op, OpAdaptor adaptor,
|
||
|
ConversionPatternRewriter &rewriter) const override {
|
||
|
Location loc = op.getLoc();
|
||
|
// Generate sequence for getting the next seed with LCG step:
|
||
|
// nextSeed = (multiplier * currentSeed + incrementStep) mod 2^64.
|
||
|
// Refer to https://en.wikipedia.org/wiki/Linear_congruential_generator.
|
||
|
// Get the current seed value.
|
||
|
auto tensorType = RankedTensorType::get({}, rewriter.getI64Type());
|
||
|
Value globalVar = rewriter.create<ml_program::GlobalLoadOp>(
|
||
|
loc, tensorType,
|
||
|
SymbolRefAttr::get(op->getContext(), getSeedGobalVarName()));
|
||
|
Value currentSeed = rewriter.create<tensor::ExtractOp>(loc, globalVar);
|
||
|
|
||
|
// The value of multiplier and incrementStep are referenced from
|
||
|
// https://en.wikipedia.org/wiki/Linear_congruential_generator for 2^64.
|
||
|
Value multiplier = rewriter.create<arith::ConstantOp>(
|
||
|
loc, rewriter.getI64IntegerAttr(6364136223846793005));
|
||
|
Value incrementStep = rewriter.create<arith::ConstantOp>(
|
||
|
loc, rewriter.getI64IntegerAttr(1442695040888963407));
|
||
|
// temp = multiplier * currentSeed + incrementStep
|
||
|
Value mul = rewriter.create<arith::MulIOp>(loc, currentSeed, multiplier);
|
||
|
Value seed = rewriter.create<arith::AddIOp>(loc, mul, incrementStep);
|
||
|
globalVar = rewriter.create<tensor::InsertOp>(loc, seed, globalVar);
|
||
|
rewriter.create<ml_program::GlobalStoreOp>(
|
||
|
loc, SymbolRefAttr::get(op->getContext(), getSeedGobalVarName()),
|
||
|
globalVar);
|
||
|
rewriter.replaceOp(op, seed);
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
// -----------------------------------------------------------------------------
|
||
|
// The pass
|
||
|
// -----------------------------------------------------------------------------
|
||
|
|
||
|
namespace {
|
||
|
class ConvertTorchConversionToMLProgram
|
||
|
: public ConvertTorchConversionToMLProgramBase<
|
||
|
ConvertTorchConversionToMLProgram> {
|
||
|
public:
|
||
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
||
|
registry.insert<tensor::TensorDialect>();
|
||
|
registry.insert<arith::ArithDialect>();
|
||
|
registry.insert<ml_program::MLProgramDialect>();
|
||
|
TorchConversion::getBackendTypeConversionDependentDialects(registry);
|
||
|
}
|
||
|
|
||
|
void runOnOperation() override {
|
||
|
MLIRContext *context = &getContext();
|
||
|
ConversionTarget target(*context);
|
||
|
target.addLegalDialect<tensor::TensorDialect, arith::ArithDialect,
|
||
|
ml_program::MLProgramDialect>();
|
||
|
|
||
|
TypeConverter typeConverter;
|
||
|
typeConverter.addConversion([](Type type) { return type; });
|
||
|
TorchConversion::setupBackendTypeConversion(target, typeConverter);
|
||
|
|
||
|
auto module = getOperation()->getParentOfType<ModuleOp>();
|
||
|
OpBuilder b(module.getBodyRegion());
|
||
|
createGlobalVariableForSeed(b, module);
|
||
|
|
||
|
RewritePatternSet patterns(context);
|
||
|
target.addIllegalOp<GetNextSeedOp>();
|
||
|
patterns.add<ConvertGetNextSeedOp>(typeConverter, context);
|
||
|
|
||
|
if (failed(applyPartialConversion(getOperation(), target,
|
||
|
std::move(patterns))))
|
||
|
return signalPassFailure();
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
||
|
mlir::torch::createConvertTorchConversionToMLProgramPass() {
|
||
|
return std::make_unique<ConvertTorchConversionToMLProgram>();
|
||
|
}
|