2020-09-29 03:02:35 +08:00
|
|
|
//===-------------------------------------------------------*- tablegen -*-===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef TORCH_OPS
|
|
|
|
#define TORCH_OPS
|
|
|
|
|
2021-01-28 08:35:44 +08:00
|
|
|
include "npcomp/Dialect/Torch/IR/TorchTypes.td"
|
2020-10-23 14:31:34 +08:00
|
|
|
include "npcomp/Dialect/Torch/IR/OpInterfaces.td"
|
2021-01-28 08:35:44 +08:00
|
|
|
include "mlir/IR/SymbolInterfaces.td"
|
2020-09-29 03:02:35 +08:00
|
|
|
|
|
|
|
class Torch_Op<string mnemonic, list<OpTrait> traits = []>
|
|
|
|
: Op<Torch_Dialect, mnemonic, traits> {
|
|
|
|
}
|
|
|
|
|
2020-10-23 14:31:34 +08:00
|
|
|
// TODO: Add alias mapping from the signature and use it to implement the
|
|
|
|
// effects interface (since whether the kernel_call has side effects is
|
|
|
|
// dependent on its metadata).
|
|
|
|
def Torch_KernelCallOp : Torch_Op<"kernel_call", [
|
|
|
|
DeclareOpInterfaceMethods<TorchKernelOpInterface>]> {
|
2020-09-30 05:17:34 +08:00
|
|
|
let summary = "Calls a Torch custom kernel";
|
|
|
|
let description = [{
|
|
|
|
Torch kernel calls are matched by the runtime based on signature, including
|
|
|
|
the fully qualified kernel name (i.e. "namespace::name") and the tuple of
|
|
|
|
argument types. This op models such an invocation.
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins
|
2020-10-23 14:31:34 +08:00
|
|
|
StrAttr:$kernelName,
|
|
|
|
Variadic<AnyTorchType>:$args,
|
|
|
|
StrArrayAttr:$sigArgTypes,
|
|
|
|
StrArrayAttr:$sigRetTypes,
|
|
|
|
BoolAttr:$sigIsVararg,
|
|
|
|
BoolAttr:$sigIsVarret,
|
|
|
|
BoolAttr:$sigIsMutable
|
|
|
|
// TODO: Add alias mapping.
|
2020-09-30 05:17:34 +08:00
|
|
|
);
|
|
|
|
let results = (outs
|
|
|
|
Variadic<AnyTorchType>:$results
|
|
|
|
);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
2020-10-23 14:31:34 +08:00
|
|
|
$kernelName $args `:` functional-type($args, results) attr-dict
|
2020-09-30 05:17:34 +08:00
|
|
|
}];
|
2020-09-29 03:02:35 +08:00
|
|
|
}
|
|
|
|
|
2021-01-28 08:35:44 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TorchScript modeling ops.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
def Torch_NnModuleOp : Torch_Op<"nn_module", [
|
|
|
|
SingleBlockImplicitTerminator<"::mlir::NPCOMP::Torch::NnModuleTerminatorOp">]> {
|
|
|
|
let summary = "Constructs a torch.nn.Module";
|
|
|
|
let description = [{
|
|
|
|
This op is used to represent a torch.nn.Module when importing a
|
|
|
|
graph of Python objects.
|
|
|
|
|
|
|
|
This op returns a new torch.nn.Module as an SSA value, with a set of
|
|
|
|
declaratively specified properties.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
```mlir
|
|
|
|
%2 = torch.nn_module {
|
|
|
|
torch.attr "b", %bool_true : !basicpy.BoolType
|
|
|
|
torch.attr "i", %num3_i64 : i64
|
|
|
|
torch.attr "f", %num : f64
|
|
|
|
torch.attr "t", %0 : !numpy.ndarray<*:!numpy.any_dtype>
|
|
|
|
torch.attr "submodule", %1 : !torch.nn.Module
|
|
|
|
torch.method "method", @f
|
|
|
|
}
|
|
|
|
```
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins);
|
|
|
|
let results = (outs Torch_NnModuleType:$result);
|
|
|
|
let regions = (region SizedRegion<1>:$region);
|
|
|
|
let verifier = "return ::verify(*this);";
|
|
|
|
|
|
|
|
let assemblyFormat = "$region attr-dict";
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_NnModuleTerminatorOp : Torch_Op<"nn_module_terminator", [Terminator,
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::NnModuleOp">]> {
|
|
|
|
let summary = "Implicit terminator for torch.nn_module";
|
|
|
|
|
|
|
|
let arguments = (ins);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = "attr-dict";
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_AttrOp : Torch_Op<"attr", [
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::NnModuleOp">]> {
|
|
|
|
let summary = "Define an attribute of a torch.nn.Module";
|
|
|
|
let description = [{
|
|
|
|
This op declaratively specifies that the parent torch.nn_module has an
|
|
|
|
attribute `name` with value `value`, which is allowed to be an arbitrary
|
|
|
|
Torch-compatible SSA value, including other torch.nn.Module's.
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins StrAttr:$name, AnyTorchType:$value);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$name `,` $value attr-dict `:` type($value)
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
|
|
|
def Torch_MethodOp : Torch_Op<"method", [
|
|
|
|
HasParent<"::mlir::NPCOMP::Torch::NnModuleOp">,
|
|
|
|
DeclareOpInterfaceMethods<SymbolUserOpInterface>
|
|
|
|
]> {
|
|
|
|
let summary = "Define a method of a torch.nn.Module";
|
|
|
|
let description = [{
|
|
|
|
This op declaratively specifies that the parent torch.nn_module has a
|
|
|
|
method `name` which calls `function`. `function` is an unbound function.
|
|
|
|
That is, it explicitly takes the torch.nn.Module as a parameter (no implicit
|
|
|
|
"self" object).
|
|
|
|
}];
|
|
|
|
|
|
|
|
let arguments = (ins StrAttr:$name, FlatSymbolRefAttr:$function);
|
|
|
|
let results = (outs);
|
|
|
|
|
|
|
|
let assemblyFormat = [{
|
|
|
|
$name `,` $function attr-dict
|
|
|
|
}];
|
|
|
|
}
|
|
|
|
|
2020-09-29 03:02:35 +08:00
|
|
|
#endif // TORCH_OPS
|