Rework e2e flow to use new "npcomprt"
This ~totally reworks the existing "runtime" stuff to be more
principled and usable, such as from Python. It's still not fully
production-quality, mainly in the department of memory management (e.g.
it currently leaks memory; we need to figure out "who frees memrefs" +
the analysis and transformation needed to do that (maybe use upstream
buffer allocation pass?)).
The user API is in include/npcomp/runtime/UserAPI.h, though
include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper.
The stuff under {include,lib}/runtime is totally firewalled from the
compiler and tiny (<6kB, though no attention has gone into optimizing
that size). For example, we don't link in libSupport into the runtime,
instead having our own bare bones replacements for basics like ArrayRef
(the JITRuntime helps with bridging that gap, since it *can* depend on
all common LLVM utilities).
The overall features of npcomprt is that it exposes a module that
with multiple function entry points. Each function has arguments and
results that are tensor-valued, and npcomprt::Tensor is the runtime type
that is used to interact with that (and a npcomprt::Ref<T>
reference-counting wrapper is provided to wrap npcomprt::Tensor in the
common case).
From an implementation perspective, an npcomprt module at the
LLVM/object/binary level exposes a single module descriptor struct that
has pointers to other metadata (currently just a list of function
metadata descriptors). All interactions with the npcomp runtime are
keyed off of that module descriptor, including function lookups and
dispatching. This is done to dodge platform ABI issues and also allow
enough reflection to e.g. verify provided arguments.
Most of the compiler-side work here was in LowerToNpcomprtABI and
LowerToLLVM.
Also,
- Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting
annoying to type the underscores/caps.
- misc improvements to bash_helpers.sh
2020-07-09 08:15:40 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "npcomp/runtime/UserAPI.h"
|
|
|
|
|
|
|
|
#include <array>
|
|
|
|
#include <cassert>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <cstring>
|
|
|
|
|
2020-07-11 08:31:24 +08:00
|
|
|
#include "CompilerDataStructures.h"
|
|
|
|
|
Rework e2e flow to use new "npcomprt"
This ~totally reworks the existing "runtime" stuff to be more
principled and usable, such as from Python. It's still not fully
production-quality, mainly in the department of memory management (e.g.
it currently leaks memory; we need to figure out "who frees memrefs" +
the analysis and transformation needed to do that (maybe use upstream
buffer allocation pass?)).
The user API is in include/npcomp/runtime/UserAPI.h, though
include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper.
The stuff under {include,lib}/runtime is totally firewalled from the
compiler and tiny (<6kB, though no attention has gone into optimizing
that size). For example, we don't link in libSupport into the runtime,
instead having our own bare bones replacements for basics like ArrayRef
(the JITRuntime helps with bridging that gap, since it *can* depend on
all common LLVM utilities).
The overall features of npcomprt is that it exposes a module that
with multiple function entry points. Each function has arguments and
results that are tensor-valued, and npcomprt::Tensor is the runtime type
that is used to interact with that (and a npcomprt::Ref<T>
reference-counting wrapper is provided to wrap npcomprt::Tensor in the
common case).
From an implementation perspective, an npcomprt module at the
LLVM/object/binary level exposes a single module descriptor struct that
has pointers to other metadata (currently just a list of function
metadata descriptors). All interactions with the npcomp runtime are
keyed off of that module descriptor, including function lookups and
dispatching. This is done to dodge platform ABI issues and also allow
enough reflection to e.g. verify provided arguments.
Most of the compiler-side work here was in LowerToNpcomprtABI and
LowerToLLVM.
Also,
- Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting
annoying to type the underscores/caps.
- misc improvements to bash_helpers.sh
2020-07-09 08:15:40 +08:00
|
|
|
using namespace npcomprt;
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Tensor
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static std::int32_t totalElements(ArrayRef<std::int32_t> extents) {
|
|
|
|
std::int32_t ret = 1;
|
|
|
|
for (int i = 0, e = extents.size(); i < e; i++) {
|
|
|
|
ret *= extents[i];
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::int32_t npcomprt::getElementTypeByteSize(ElementType type) {
|
|
|
|
switch (type) {
|
|
|
|
case ElementType::F32:
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Ref<Tensor> Tensor::create(ArrayRef<std::int32_t> extents, ElementType type,
|
|
|
|
void *data) {
|
|
|
|
return Ref<Tensor>(createRaw(extents, type, data));
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor *Tensor::createRaw(ArrayRef<std::int32_t> extents, ElementType type,
|
|
|
|
void *data) {
|
|
|
|
auto *tensor = static_cast<Tensor *>(
|
|
|
|
std::malloc(sizeof(Tensor) + extents.size() * sizeof(std::int32_t)));
|
|
|
|
|
|
|
|
tensor->elementType = type;
|
|
|
|
tensor->rank = extents.size();
|
|
|
|
auto byteSize = getElementTypeByteSize(type) * totalElements(extents);
|
|
|
|
// TODO: Align the buffer.
|
|
|
|
tensor->allocatedPtr = std::malloc(byteSize);
|
|
|
|
tensor->data = tensor->allocatedPtr;
|
|
|
|
std::memcpy(tensor->data, data, byteSize);
|
|
|
|
for (int i = 0, e = extents.size(); i < e; i++)
|
|
|
|
tensor->getMutableExtents()[i] = extents[i];
|
|
|
|
return tensor;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::int32_t Tensor::getDataByteSize() const {
|
|
|
|
return getElementTypeByteSize(getElementType()) * totalElements(getExtents());
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Module metadata descriptors.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Module operations.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
template <typename T> static void *ToVoidPtr(T *ptr) {
|
|
|
|
return const_cast<void *>(static_cast<const void *>(ptr));
|
|
|
|
}
|
|
|
|
static FuncDescriptor *getFuncDescriptor(ModuleDescriptor *moduleDescriptor,
|
|
|
|
StringRef name) {
|
|
|
|
for (int i = 0, e = moduleDescriptor->numFuncDescriptors; i < e; i++) {
|
|
|
|
auto &functionDescriptor = moduleDescriptor->functionDescriptors[i];
|
|
|
|
if (StringRef(functionDescriptor.name, functionDescriptor.nameLen) ==
|
|
|
|
name) {
|
|
|
|
return &functionDescriptor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void npcomprt::invoke(ModuleDescriptor *moduleDescriptor,
|
|
|
|
StringRef functionName, ArrayRef<Ref<Tensor>> inputs,
|
|
|
|
MutableArrayRef<Ref<Tensor>> outputs) {
|
|
|
|
auto *descriptor = getFuncDescriptor(moduleDescriptor, functionName);
|
|
|
|
assert(descriptor && "unknown function name");
|
|
|
|
assert(inputs.size() < kMaxArity && "number of inputs exceeds kMaxArity");
|
|
|
|
assert(outputs.size() < kMaxArity && "number of outputs exceeds kMaxArity");
|
|
|
|
std::array<Tensor *, kMaxArity> inputTensorPtrs;
|
|
|
|
std::array<Tensor *, kMaxArity> outputTensorPtrs;
|
|
|
|
std::array<void *, kMaxArity> packedInputs;
|
|
|
|
std::array<void *, kMaxArity> packedOutputs;
|
|
|
|
for (int i = 0, e = inputs.size(); i < e; i++)
|
|
|
|
inputTensorPtrs[i] = inputs[i].get();
|
|
|
|
for (int i = 0, e = inputs.size(); i < e; i++)
|
|
|
|
packedInputs[i] = ToVoidPtr(inputTensorPtrs[i]);
|
|
|
|
descriptor->functionPtr(packedInputs.data(), packedOutputs.data());
|
|
|
|
for (int i = 0, e = outputs.size(); i < e; i++)
|
|
|
|
outputTensorPtrs[i] = static_cast<Tensor *>(packedOutputs[i]);
|
|
|
|
// TODO: Actually manage refcounts inside the compiler.
|
|
|
|
// Right now, we only pass around npcomprt.tensor's in trivial ways on ABI
|
|
|
|
// boundaries, so the following contract of the compiler-generated code works:
|
|
|
|
// - input tensors are never retained or released
|
|
|
|
// - output tensors always have refcount 0. Hence the next line here is
|
|
|
|
// actually essential because it increments the refcounts so they are nonzero.
|
|
|
|
for (int i = 0, e = outputs.size(); i < e; i++)
|
|
|
|
outputs[i] = Ref<Tensor>(outputTensorPtrs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
LogicalResult npcomprt::getMetadata(ModuleDescriptor *moduleDescriptor,
|
|
|
|
StringRef functionName,
|
|
|
|
FunctionMetadata &outMetadata) {
|
|
|
|
auto *descriptor = getFuncDescriptor(moduleDescriptor, functionName);
|
|
|
|
if (!descriptor)
|
|
|
|
return failure();
|
|
|
|
outMetadata.numInputs = descriptor->numInputs;
|
|
|
|
outMetadata.numOutputs = descriptor->numOutputs;
|
|
|
|
return success();
|
|
|
|
}
|