torch-mlir/lib/Conversion/TorchToMhlo/Pooling.cpp

543 lines
23 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
#include "../PassDetail.h"
#include "./MhloLegalizeUtils.h"
#include "./PopulatePatterns.h"
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "stablehlo/dialect/ChloOps.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
#include <iostream>
#include <numeric>
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
using namespace mlir::torch::torch_to_mhlo;
static Value createInitialValueForAtenPoolingOp(Operation *op, Type elementTy,
PatternRewriter &rewriter) {
auto constType = RankedTensorType::get({}, elementTy);
// Avg pooling
if (isa<AtenAdaptiveAvgPool2dOp, AtenAvgPool2dOp>(op)) {
if (elementTy.isa<mlir::FloatType>()) {
auto constAttr = DenseElementsAttr::get(
constType, {APFloat::getZero(
elementTy.cast<mlir::FloatType>().getFloatSemantics(),
/*negative=*/false)});
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
constAttr);
} else if (elementTy.isa<mlir::IntegerType>() &&
elementTy.getIntOrFloatBitWidth() != 8) {
auto constAttr = DenseElementsAttr::get(
constType, {APInt::getZero(elementTy.getIntOrFloatBitWidth())});
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
constAttr);
}
}
// Max pooling
if (isa<AtenMaxPool2dOp, AtenMaxPool2dWithIndicesOp>(op)) {
if (elementTy.isa<mlir::FloatType>()) {
auto constAttr = DenseElementsAttr::get(
constType, {APFloat::getLargest(
elementTy.cast<mlir::FloatType>().getFloatSemantics(),
/*negative=*/true)});
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
constAttr);
} else if (elementTy.isa<mlir::IntegerType>() &&
elementTy.getIntOrFloatBitWidth() != 8) {
auto constAttr = DenseElementsAttr::get(
constType,
{APInt::getSignedMinValue(elementTy.getIntOrFloatBitWidth())});
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
constAttr);
}
}
op->emitError("unimplemented lowering in AtenPoolingOp");
return nullptr;
}
// AtenMaxPool2dOp
template <>
LogicalResult ConvertAtenOp<AtenMaxPool2dOp>::matchAndRewrite(
AtenMaxPool2dOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.self();
auto inputTy = input.getType().cast<RankedTensorType>();
auto inputElemTy = inputTy.getElementType();
auto inputRank = inputTy.getRank();
auto outTy =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
if (inputRank <= 2) {
return op.emitError(
"max_pooling2d only supports inputs with rank higher than 2");
}
SmallVector<int64_t, 2> padding, kernelSize, stride, dilation;
bool ceilMode = false;
if (!(matchPattern(op.kernel_size(), m_TorchConstantIntList(kernelSize)))) {
return rewriter.notifyMatchFailure(
op, "non-const int kernel size unsupported!");
}
if (!(matchPattern(op.stride(), m_TorchConstantIntList(stride)))) {
return rewriter.notifyMatchFailure(op, "non-const int stride unsupported!");
}
if (!(matchPattern(op.padding(), m_TorchConstantIntList(padding)))) {
return rewriter.notifyMatchFailure(op,
"non-const int padding unsupported!");
}
if (!(matchPattern(op.dilation(), m_TorchConstantIntList(dilation)))) {
return rewriter.notifyMatchFailure(op,
"non-const int dilation unsupported!");
}
if (!(matchPattern(op.ceil_mode(), m_TorchConstantBool(&ceilMode)))) {
return rewriter.notifyMatchFailure(op,
"non-const bool ceil_mode unsupported!");
}
// prepend 1 to kernelSize, stride, dilation until they are of same rank as
// input
SmallVector<int64_t> mhloStride(inputRank, 1);
SmallVector<int64_t> mhloDilation(inputRank, 1);
SmallVector<int64_t> mhloKernelSize(inputRank, 1);
SmallVector<int64_t> mhloPadding(inputRank * 2, 0);
std::copy(dilation.begin(), dilation.end(),
mhloDilation.begin() + inputRank - 2);
std::copy(stride.begin(), stride.end(), mhloStride.begin() + inputRank - 2);
std::copy(kernelSize.begin(), kernelSize.end(),
mhloKernelSize.begin() + inputRank - 2);
Value initVal = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
mhloPadding[mhloPadding.size() - 4] = padding[0];
mhloPadding[mhloPadding.size() - 3] = padding[0];
mhloPadding[mhloPadding.size() - 2] = padding[1];
mhloPadding[mhloPadding.size() - 1] = padding[1];
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloKernelSize.size())},
rewriter.getI64Type()),
mhloKernelSize);
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloStride.size())},
rewriter.getI64Type()),
mhloStride);
DenseIntElementsAttr baseDilations;
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloDilation.size())},
rewriter.getI64Type()),
mhloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
rewriter.getI64Type()),
mhloPadding);
auto reduceWindowOp = rewriter.create<mhlo::ReduceWindowOp>(
op->getLoc(), outTy, input, initVal, windowDimensions, windowStrides,
baseDilations, windowDilations, pad);
Block &block = reduceWindowOp.body().emplaceBlock();
auto blockArgumentTy = RankedTensorType::get({}, inputElemTy);
block.addArgument(blockArgumentTy, op->getLoc());
block.addArgument(blockArgumentTy, op->getLoc());
auto *firstArg = block.args_begin();
auto secondArg = block.args_rbegin();
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&block);
Value result =
rewriter.create<mhlo::MaxOp>(op->getLoc(), *firstArg, *secondArg);
rewriter.create<mhlo::ReturnOp>(op->getLoc(), result);
}
rewriter.replaceOp(op, reduceWindowOp.getResults());
return success();
}
// AtenMaxPool2dWithIndicesOp
template <>
LogicalResult ConvertAtenOp<AtenMaxPool2dWithIndicesOp>::matchAndRewrite(
AtenMaxPool2dWithIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.self();
auto inputTy = input.getType().cast<RankedTensorType>();
auto inputElemTy = inputTy.getElementType();
auto inputShape = inputTy.getShape();
auto inputRank = inputTy.getRank();
auto outValTy =
getTypeConverter()->convertType(op.getType(0)).cast<RankedTensorType>();
auto outIdxTy =
getTypeConverter()->convertType(op.getType(1)).cast<RankedTensorType>();
if (inputRank <= 2) {
return op.emitError(
"max_pooling2d only supports inputs with rank higher than 2");
}
SmallVector<int64_t, 2> padding, kernelSize, stride, dilation;
bool ceilMode = false;
if (!(matchPattern(op.kernel_size(), m_TorchConstantIntList(kernelSize)))) {
return rewriter.notifyMatchFailure(
op, "non-const int kernel size unsupported!");
}
if (!(matchPattern(op.stride(), m_TorchConstantIntList(stride)))) {
return rewriter.notifyMatchFailure(op, "non-const int stride unsupported!");
}
if (!(matchPattern(op.padding(), m_TorchConstantIntList(padding)))) {
return rewriter.notifyMatchFailure(op,
"non-const int padding unsupported!");
}
if (!(matchPattern(op.dilation(), m_TorchConstantIntList(dilation)))) {
return rewriter.notifyMatchFailure(op,
"non-const int dilation unsupported!");
}
if (!(matchPattern(op.ceil_mode(), m_TorchConstantBool(&ceilMode)))) {
return rewriter.notifyMatchFailure(op,
"non-const bool ceil_mode unsupported!");
}
// prepend 1 to kernelSize, stride, dilation until they are of same rank as
// input
SmallVector<int64_t> mhloStride(inputRank, 1);
SmallVector<int64_t> mhloDilation(inputRank, 1);
SmallVector<int64_t> mhloKernelSize(inputRank, 1);
SmallVector<int64_t> mhloPadding(inputRank * 2, 0);
std::copy(dilation.begin(), dilation.end(),
mhloDilation.begin() + inputRank - 2);
std::copy(stride.begin(), stride.end(), mhloStride.begin() + inputRank - 2);
std::copy(kernelSize.begin(), kernelSize.end(),
mhloKernelSize.begin() + inputRank - 2);
Value initVal = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
mhloPadding[mhloPadding.size() - 4] = padding[0];
mhloPadding[mhloPadding.size() - 3] = padding[0];
mhloPadding[mhloPadding.size() - 2] = padding[1];
mhloPadding[mhloPadding.size() - 1] = padding[1];
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloKernelSize.size())},
rewriter.getI64Type()),
mhloKernelSize);
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloStride.size())},
rewriter.getI64Type()),
mhloStride);
DenseIntElementsAttr baseDilations;
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloDilation.size())},
rewriter.getI64Type()),
mhloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
rewriter.getI64Type()),
mhloPadding);
const auto &options = getOptions();
auto inputShapeInfo =
mhlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
if (failed(inputShapeInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to get dimension sizes of the input");
}
auto inputShapeVec = *inputShapeInfo;
auto inputShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
op->getLoc(), inputShapeVec);
SmallVector<Value> initIndexShapeVec;
for (int64_t i = 0; i < inputRank - 2; i++)
initIndexShapeVec.push_back(inputShapeVec[i]);
initIndexShapeVec.push_back(rewriter.create<mlir::arith::MulIOp>(
op->getLoc(), inputShapeVec[inputRank - 1],
inputShapeVec[inputRank - 2]));
auto initIndexShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
op->getLoc(), initIndexShapeVec);
SmallVector<int64_t> initIndexShapeForType(inputShape.begin(),
inputShape.end() - 2);
if (inputShape[inputRank - 1] == ShapedType::kDynamicSize ||
inputShape[inputRank - 2] == ShapedType::kDynamicSize) {
initIndexShapeForType.push_back(ShapedType::kDynamicSize);
} else {
initIndexShapeForType.push_back(inputShape[inputRank - 1] *
inputShape[inputRank - 2]);
}
auto initIndexTensor =
rewriter
.create<mhlo::DynamicIotaOp>(
op->getLoc(),
RankedTensorType::get(initIndexShapeForType,
rewriter.getI64Type()),
initIndexShapeTensor, static_cast<uint64_t>(inputRank - 2))
.getResult();
auto indexTensor =
rewriter
.create<mhlo::DynamicReshapeOp>(
op->getLoc(),
RankedTensorType::get(inputShape, rewriter.getI64Type()),
initIndexTensor, inputShapeTensor)
.getResult();
Value initIdx = mhlo::getConstTensor<int64_t>(rewriter, op, {0}, {}).value();
auto reduceWindowOp = rewriter.create<mhlo::ReduceWindowOp>(
op->getLoc(), mlir::TypeRange{outValTy, outIdxTy},
mlir::ValueRange{input, indexTensor}, mlir::ValueRange{initVal, initIdx},
windowDimensions, windowStrides, baseDilations, windowDilations, pad);
Block &block = reduceWindowOp.body().emplaceBlock();
// Add bb argument
auto blockValArgumentType = RankedTensorType::get({}, inputElemTy);
auto blockIdxArgumentType = RankedTensorType::get({}, rewriter.getI64Type());
auto compareResultType = RankedTensorType::get({}, rewriter.getI1Type());
block.addArgument(blockValArgumentType, op->getLoc());
block.addArgument(blockIdxArgumentType, op->getLoc());
block.addArgument(blockValArgumentType, op->getLoc());
block.addArgument(blockIdxArgumentType, op->getLoc());
auto *firstValArg = block.args_begin();
auto *firstIdxArg = std::next(firstValArg);
auto *secondValArg = std::next(firstIdxArg);
auto *secondIdxArg = std::next(secondValArg);
mhlo::ComparisonTypeAttr compareTypeAttr;
if (inputTy.getElementType().isa<mlir::FloatType>()) {
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
rewriter.getContext(), mhlo::ComparisonType::FLOAT);
} else if (inputTy.getElementType().isa<mlir::IntegerType>()) {
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
rewriter.getContext(), mhlo::ComparisonType::SIGNED);
}
mhlo::ComparisonDirectionAttr compareGeDirectionAttr =
mhlo::ComparisonDirectionAttr::get(rewriter.getContext(),
mhlo::ComparisonDirection::GE);
mhlo::ComparisonDirectionAttr compareEqDirectionAttr =
mhlo::ComparisonDirectionAttr::get(rewriter.getContext(),
mhlo::ComparisonDirection::EQ);
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&block);
Value compareGeResult = rewriter.create<mhlo::CompareOp>(
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
compareGeDirectionAttr, compareTypeAttr);
Value retValResult = rewriter.create<mhlo::SelectOp>(
op->getLoc(), compareGeResult, *firstValArg, *secondValArg);
// Get smaller index if compared values are equal.
Value compareEqResult = rewriter.create<mhlo::CompareOp>(
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
compareEqDirectionAttr, compareTypeAttr);
Value minIdx =
rewriter.create<mhlo::MinOp>(op->getLoc(), *firstIdxArg, *secondIdxArg);
Value idxWithGeVal = rewriter.create<mhlo::SelectOp>(
op->getLoc(), compareGeResult, *firstIdxArg, *secondIdxArg);
Value retIdxResult = rewriter.create<mhlo::SelectOp>(
op->getLoc(), compareEqResult, minIdx, idxWithGeVal);
rewriter.create<mhlo::ReturnOp>(
op->getLoc(), mlir::ValueRange{retValResult, retIdxResult});
}
rewriter.replaceOp(op, reduceWindowOp.getResults());
return success();
}
// AtenAvgPool2dOp
template <>
LogicalResult ConvertAtenOp<AtenAvgPool2dOp>::matchAndRewrite(
AtenAvgPool2dOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.self();
auto inputTy = input.getType().cast<RankedTensorType>();
auto inputElemTy = inputTy.getElementType();
auto inputRank = inputTy.getRank();
auto outTy =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
auto outShape = outTy.getShape();
if (inputRank <= 2) {
return op.emitError(
"avg_pooling2d only supports inputs with rank higher than 2");
}
SmallVector<int64_t, 2> padding, kernelSize, stride;
bool ceilMode = false;
bool countIncludePad = true;
if (!(matchPattern(op.kernel_size(), m_TorchConstantIntList(kernelSize)))) {
return rewriter.notifyMatchFailure(
op, "non-const int kernel size unsupported!");
}
if (!(matchPattern(op.stride(), m_TorchConstantIntList(stride)))) {
return rewriter.notifyMatchFailure(op, "non-const int stride unsupported!");
}
if (!(matchPattern(op.padding(), m_TorchConstantIntList(padding)))) {
return rewriter.notifyMatchFailure(op,
"non-const int padding unsupported!");
}
if (!(matchPattern(op.ceil_mode(), m_TorchConstantBool(&ceilMode)))) {
return rewriter.notifyMatchFailure(op,
"non-const bool ceil_mode unsupported!");
}
if (!(matchPattern(op.count_include_pad(),
m_TorchConstantBool(&countIncludePad)))) {
return rewriter.notifyMatchFailure(
op, "non-const bool count_include_pad unsupported!");
}
if (succeeded(checkNotNone(rewriter, op, op.divisor_override()))) {
return rewriter.notifyMatchFailure(
op, "only None divisor_override supported for now!");
}
// prepend 1 to kernelSize, stride, dilation until they are of same rank as
// input
SmallVector<int64_t> mhloStride(inputRank, 1);
SmallVector<int64_t> mhloDilation(inputRank, 1);
SmallVector<int64_t> mhloKernelSize(inputRank, 1);
SmallVector<int64_t> mhloPadding(inputRank * 2, 0);
std::copy(stride.begin(), stride.end(), mhloStride.begin() + inputRank - 2);
std::copy(kernelSize.begin(), kernelSize.end(),
mhloKernelSize.begin() + inputRank - 2);
mhloPadding[mhloPadding.size() - 4] = padding[0];
mhloPadding[mhloPadding.size() - 3] = padding[0];
mhloPadding[mhloPadding.size() - 2] = padding[1];
mhloPadding[mhloPadding.size() - 1] = padding[1];
Value initVal = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloKernelSize.size())},
rewriter.getI64Type()),
mhloKernelSize);
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloStride.size())},
rewriter.getI64Type()),
mhloStride);
DenseIntElementsAttr baseDilations;
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(mhloDilation.size())},
rewriter.getI64Type()),
mhloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
rewriter.getI64Type()),
mhloPadding);
auto reduceWindowSum = rewriter.create<mhlo::ReduceWindowOp>(
op->getLoc(), outTy, input, initVal, windowDimensions, windowStrides,
baseDilations, windowDilations, pad);
Block &sumBlock = reduceWindowSum.body().emplaceBlock();
// Add bb argument
auto blockArgumentType = RankedTensorType::get({}, inputElemTy);
sumBlock.addArgument(blockArgumentType, op->getLoc());
sumBlock.addArgument(blockArgumentType, op->getLoc());
auto *firstArg = sumBlock.args_begin();
auto secondArg = sumBlock.args_rbegin();
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&sumBlock);
Value sumResult =
rewriter.create<mhlo::AddOp>(op->getLoc(), *firstArg, *secondArg);
rewriter.create<mhlo::ReturnOp>(op->getLoc(), sumResult);
}
// Use kernel size as the divisor
if (countIncludePad) {
Value divisor = mhlo::getConstTensor<int64_t>(
rewriter, op, {kernelSize[0] * kernelSize[1]}, {})
.value();
divisor = mhlo::promoteType(rewriter, divisor, outTy);
DenseIntElementsAttr bcastDimensions;
rewriter.replaceOpWithNewOp<mlir::chlo::BroadcastDivOp>(
op, outTy, reduceWindowSum.getResult(0), divisor, bcastDimensions);
return success();
}
// Use another mhlo.ReduceWindowOp to get the divisor
Value windowSizeConst =
mhlo::getConstTensor<float>(rewriter, op, {1.0}, {}).value();
windowSizeConst = mhlo::promoteType(rewriter, windowSizeConst, outTy);
const auto &options = getOptions();
auto inputShapeVec =
*mhlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
auto inputShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
op->getLoc(), inputShapeVec);
windowSizeConst = rewriter.create<mhlo::DynamicBroadcastInDimOp>(
op->getLoc(),
RankedTensorType::get(inputTy.getShape(), outTy.getElementType()),
windowSizeConst, inputShapeTensor, rewriter.getI64TensorAttr({}));
Value zero = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
auto reduceWindowSize = rewriter.create<mhlo::ReduceWindowOp>(
op->getLoc(), RankedTensorType::get(outShape, inputElemTy),
windowSizeConst, zero, windowDimensions, windowStrides, baseDilations,
windowDilations, pad);
Block &sizeBlock = reduceWindowSize.body().emplaceBlock();
// Add bb argument
blockArgumentType = RankedTensorType::get({}, inputElemTy);
sizeBlock.addArgument(blockArgumentType, op->getLoc());
sizeBlock.addArgument(blockArgumentType, op->getLoc());
firstArg = sizeBlock.args_begin();
secondArg = sizeBlock.args_rbegin();
{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&sizeBlock);
Value sumResult =
rewriter.create<mhlo::AddOp>(op->getLoc(), *firstArg, *secondArg);
rewriter.create<mhlo::ReturnOp>(op->getLoc(), sumResult);
}
rewriter.replaceOpWithNewOp<mhlo::DivOp>(
op, outTy, reduceWindowSum.getResult(0), reduceWindowSize.getResult(0));
return success();
}
void mlir::torch::torch_to_mhlo::populatePoolingOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, const TorchToMhloOptions &options) {
MLIRContext *context = patterns.getContext();
target.addIllegalOp<AtenMaxPool2dOp>();
patterns.add<ConvertAtenOp<AtenMaxPool2dOp>>(typeConverter, context, options);
target.addIllegalOp<AtenAvgPool2dOp>();
patterns.add<ConvertAtenOp<AtenAvgPool2dOp>>(typeConverter, context, options);
target.addIllegalOp<AtenMaxPool2dWithIndicesOp>();
patterns.add<ConvertAtenOp<AtenMaxPool2dWithIndicesOp>>(typeConverter,
context, options);
}