torch-mlir/frontends/pytorch/csrc/builder/ivalue_importer.cpp

342 lines
14 KiB
C++
Raw Normal View History

//===- ivalue_importer.cpp ------------------------------------------------===//
//
// This file is licensed under a pytorch-style license
// See frontends/pytorch/LICENSE for license information.
//
//===----------------------------------------------------------------------===//
#include "ivalue_importer.h"
#include "graph_importer.h"
#include <unordered_map>
#include "mlir_utils.h"
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
#include "mlir-c/Diagnostics.h"
#include "npcomp-c/Types.h"
using namespace torch_mlir;
// Hashing functionality for IValue's.
//
// What we want here is a strict object identity hash. This is different from
// what Python usually treats as hashing, which is a deep equality hash. In
// Python terms, what we want here is a hash of `id(x)` -- unfortunately, IValue
// is not uniformly heap allocated the way a `PyObject*` is, so special handling
// is needed. At the time of this writing, there seem to be two different
// implementations, neither of which is exactly what we want.
//
// - c10::IValue::hash static method
// - Problem: Doesn't handle certain data types, in particular objects (which
// modules are a special case of) and lists/dicts. This makes sense when
// reflecting the Python semantics.
// - c10::WeakIValue::hash method
// - Problem: it literally just returns the bits of the "union" as an int.
// This seems to read uninitialized bits for the bool variant.
//
// We use the `c10::IValue::hash` static method with special cases for data
// types that need their identity to be handled specially. `c10::IValue::hash`
// seems to be implemented in a principled way following the Python semantics,
// which is compatible with the semantics we want (for the subset it doesn't
// throw an error on).
namespace {
struct IValueHasher {
size_t operator()(const c10::IValue &ivalue) const {
if (ivalue.isObject() || ivalue.isList()) {
return std::hash<const void *>()(
static_cast<const void *>(ivalue.internalToPointer()));
}
return c10::IValue::hash(ivalue);
}
};
} // namespace
// TODO: The implementation of isSameIdentity looks vulnerable to malloc reusing
// the same memory block (if this hash function is used in an online setting,
// such as when tracing). Can we do better?
namespace {
struct IValueEq {
bool operator()(const c10::IValue &lhs, const c10::IValue &rhs) const {
return lhs.isSameIdentity(rhs);
}
};
} // namespace
namespace {
/// Helper class for holding state during recursive IValue import.
///
/// The intended usage pattern of this class is to construct it then call
/// `importIValue`.
///
/// The `importIValue` method can be called more than once, and values are
/// unified *by object identity*. For types isomorphic to Python builtin types
/// the behavior is what you would expect from `id(x)`.
///
/// For tensors, object identity is a little tricky. As background, at::Tensor
/// basically has 4 parts:
/// - at::Tensor which is a smart pointer to at::TensorImpl
/// - at::TensorImpl which holds sizes/strides/etc. and points to at::Storage
/// - the address of the at::TensorImpl is the identity of the tensor.
/// - at::Storage which is a smart pointer to at::StorageImpl
/// - at::StorageImpl which is a low-level buffer
/// - the address of the at::StorageImpl is the identity of the "storage".
///
/// Multiple different tensors can share the same underlying storage. We
/// currently import tensors by identity and emit errors in the case of tensors
/// with different identity but sharing the same storage. This is done because
/// correctly modeling the many ways that tensors can overlap and alias when
/// they share storage is difficult. Example hard cases are weird
/// strides/offsets that overlap, and even cases where the data types mismatch
/// (PyTorch allows this!).
class IValueImporter {
public:
IValueImporter(MlirBlock importBlock, MlirContext context)
: importBlock(importBlock), context(context), typeMapper(context) {}
MlirValue importIValue(c10::IValue value);
private:
MlirValue rawImportIValue(c10::IValue value);
MlirValue importModule(torch::jit::Module jitModule);
void importMethod(torch::jit::Function *function, MlirBlock classTypeBody);
void importClassType(c10::ClassType *classType);
MlirBlock importBlock;
MlirContext context;
TypeMapper typeMapper;
// Map tracking already-imported values.
std::unordered_map<c10::IValue, MlirValue, IValueHasher, IValueEq> valueMap;
// Used to detect potentially aliasing tensors.
std::unordered_set<c10::StorageImpl *> seenStorageImpls;
// The set of ClassType's that have already been imported.
//
// ClassType's are referenced via their `classType->name()->qualifiedName()`
// string (as an MLIR symbol name) so we don't need to keep a map associating
// them with the MlirOperation that they import into.
std::unordered_set<c10::ClassType *> classTypes;
// The stack of attribute names we have traversed to reach the current IValue.
// Used for diagnostics.
std::vector<std::string> attributeNameStack;
// The root module encountered during recursive IValue traversal.
// Used for diagnostics.
// Note that the "top-level" object being imported can in theory be a list
// of modules, so this is populated when our recursive traversal enters a
// module not enclosed in any other module, and unset after our recursive
// traversal exits the module.
c10::optional<std::string> rootModuleName;
};
} // namespace
MlirValue IValueImporter::importModule(torch::jit::Module currentModule) {
// TODO: Can we do better?
MlirLocation loc = mlirLocationUnknownGet(context);
c10::optional<c10::QualifiedName> maybeName = currentModule.type()->name();
if (!maybeName) {
throw std::invalid_argument("cannot import unnamed module");
}
std::string moduleTypeName = maybeName->qualifiedName();
// Ensure the class type has been imported.
importClassType(currentModule.type().get());
MlirOperation nnModule = createMlirOperation(
"torch.nn_module", loc,
npcompNnModuleTypeGet(context, toMlirStringRef(moduleTypeName)),
mlirRegionCreate());
MlirRegion nnModuleRegion = mlirOperationGetRegion(nnModule, 0);
mlirRegionAppendOwnedBlock(nnModuleRegion, mlirBlockCreate(0, nullptr));
MlirBlock nnModuleBody = mlirRegionGetFirstBlock(nnModuleRegion);
if (!rootModuleName.has_value()) {
rootModuleName = moduleTypeName;
}
const std::vector<c10::IValue> &slots = currentModule._ivalue()->slots();
const std::vector<c10::ClassAttribute> &classAttributes =
currentModule.type()->getAttributes();
assert(slots.size() == classAttributes.size() &&
"mismatch between object and type!");
for (int i = 0, e = slots.size(); i < e; i++) {
const c10::ClassAttribute &classAttribute = classAttributes[i];
attributeNameStack.push_back(classAttribute.getName());
MlirValue slotValue = importIValue(slots[i]);
// TODO: Is it necessary to track whether an attribute is a "parameter"?
createMlirOperationAtEnd(
nnModuleBody, "torch.slot", loc, slotValue,
toMlirNamedAttribute(
"name", mlirStringAttrGet(
context, toMlirStringRef(classAttribute.getName()))));
attributeNameStack.pop_back();
}
if (rootModuleName.has_value()) {
rootModuleName = c10::nullopt;
}
createMlirOperationAtEnd(nnModuleBody, "torch.nn_module_terminator", loc);
mlirBlockInsertOwnedOperationBefore(
importBlock, mlirBlockGetTerminator(importBlock), nnModule);
return mlirOperationGetResult(nnModule, 0);
}
MlirValue IValueImporter::importIValue(c10::IValue ivalue) {
auto it = valueMap.find(ivalue);
if (it != valueMap.end()) {
return it->second;
}
// Reject potentially aliased tensors.
if (ivalue.isTensor()) {
c10::StorageImpl *storageImpl =
ivalue.toTensor().storage().unsafeGetStorageImpl();
if (!seenStorageImpls.insert(storageImpl).second) {
std::stringstream msg;
msg << "Unhandled tensor that shares storage with another tensor.";
if (rootModuleName) {
msg << "\nFound at path '<root>."
<< c10::QualifiedName(attributeNameStack).qualifiedName()
<< "' from root object '" << *rootModuleName << "'";
}
throw std::invalid_argument(msg.str());
}
}
MlirValue value = rawImportIValue(ivalue);
valueMap[ivalue] = value;
return value;
}
MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
// TODO: Can we do better?
MlirLocation loc = mlirLocationUnknownGet(context);
if (ivalue.isBool()) {
MlirType type = npcompBoolTypeGet(context);
MlirOperation operation = createMlirOperationAtEnd(
importBlock, "basicpy.bool_constant", loc, type,
toMlirNamedAttribute("value",
mlirBoolAttrGet(context, ivalue.toBool())));
return mlirOperationGetResult(operation, 0);
}
if (ivalue.isDouble()) {
MlirType type = mlirF64TypeGet(context);
MlirOperation operation = createMlirOperationAtEnd(
importBlock, "basicpy.numeric_constant", loc, type,
toMlirNamedAttribute(
"value", mlirFloatAttrDoubleGet(context, type, ivalue.toDouble())));
return mlirOperationGetResult(operation, 0);
}
if (ivalue.isInt()) {
MlirType type = mlirIntegerTypeGet(context, 64);
MlirOperation operation = createMlirOperationAtEnd(
importBlock, "basicpy.numeric_constant", loc, type,
toMlirNamedAttribute("value",
mlirIntegerAttrGet(type, ivalue.toInt())));
return mlirOperationGetResult(operation, 0);
}
if (ivalue.isList()) {
c10::List<c10::IValue> list = ivalue.toList();
std::vector<MlirValue> elems;
for (const c10::IValue &elem : list) {
elems.push_back(importIValue(elem));
}
MlirOperation operation =
createMlirOperationAtEnd(importBlock, "basicpy.build_list", loc,
npcompListTypeGet(context), elems);
return mlirOperationGetResult(operation, 0);
}
if (ivalue.isTensor()) {
at::Tensor tensor = ivalue.toTensor().contiguous();
MlirAttribute denseElements = converTensorToMlirElementsAttr(tensor, loc);
MlirOperation constant = createMlirOperationAtEnd(
importBlock, "std.constant", loc, mlirAttributeGetType(denseElements),
toMlirNamedAttribute("value", denseElements));
MlirOperation ndarray = createMlirOperationAtEnd(
importBlock, "numpy.create_array_from_tensor", loc,
npcompNdArrayTypeGetUnranked(npcompAnyDtypeTypeGet(context)),
mlirOperationGetResult(constant, 0));
return mlirOperationGetResult(ndarray, 0);
}
if (ivalue.isModule()) {
return importModule(ivalue.toModule());
}
if (ivalue.isNone()) {
MlirOperation operation = createMlirOperationAtEnd(
importBlock, "basicpy.singleton", loc, npcompNoneTypeGet(context));
return mlirOperationGetResult(operation, 0);
}
std::stringstream msg;
msg << "Unsupported ivalue: " << ivalue;
throw std::invalid_argument(msg.str());
}
void IValueImporter::importMethod(torch::jit::Function *function,
MlirBlock classTypeBody) {
// We make an effort for the func op's symbol name to be useful for debugging,
// but still clearly non-load-bearing.
std::string symName =
"__npcomp_priv_fn." + function->qualname().qualifiedName();
MlirOperation func =
importGraphAsFuncOp(context, function->graph().get(), symName);
mlirOperationSetAttributeByName(
func, toMlirStringRef("sym_visibility"),
mlirStringAttrGet(context, toMlirStringRef("private")));
mlirBlockInsertOwnedOperationBefore(
importBlock, mlirBlockGetTerminator(importBlock), func);
createMlirOperationAtEnd(
classTypeBody, "torch.method", mlirLocationUnknownGet(context),
toMlirNamedAttribute(
"name",
mlirStringAttrGet(context, toMlirStringRef(function->name()))),
toMlirNamedAttribute("function", mlirFlatSymbolRefAttrGet(
context, toMlirStringRef(symName))));
}
void IValueImporter::importClassType(c10::ClassType *classType) {
if (!classTypes.insert(classType).second) {
return;
}
// TODO: Can we do better?
MlirLocation loc = mlirLocationUnknownGet(context);
MlirOperation op = createMlirOperationAtEnd(
importBlock, "torch.class_type", loc, mlirRegionCreate(),
toMlirNamedAttribute(
"sym_name",
mlirStringAttrGet(
context, toMlirStringRef(classType->name()->qualifiedName()))));
MlirRegion region = mlirOperationGetRegion(op, 0);
mlirRegionAppendOwnedBlock(region, mlirBlockCreate(0, nullptr));
MlirBlock classTypeBody = mlirRegionGetFirstBlock(region);
for (const c10::ClassAttribute &classAttribute : classType->getAttributes()) {
createMlirOperationAtEnd(
classTypeBody, "torch.attr", loc,
toMlirNamedAttribute(
"name", mlirStringAttrGet(
context, toMlirStringRef(classAttribute.getName()))),
toMlirNamedAttribute("type",
mlirTypeAttrGet(typeMapper.mapFromTorchType(
loc, classAttribute.getType()))));
}
for (torch::jit::Function *function : classType->methods()) {
importMethod(function, classTypeBody);
}
createMlirOperationAtEnd(classTypeBody, "torch.class_type_terminator", loc);
}
void torch_mlir::importIValue(c10::IValue ivalue, MlirBlock block,
MlirContext context) {
// When debugging module importing, it can be useful to dump as so:
// if (ivalue.isModule())
// ivalue.toModule().dump(true, false, false);
IValueImporter importer(block, context);
importer.importIValue(ivalue);
}