mirror of https://github.com/llvm/torch-mlir
54 lines
1.4 KiB
Python
54 lines
1.4 KiB
Python
|
# -*- Python -*-
|
||
|
# This file is licensed under a pytorch-style license
|
||
|
# See frontends/pytorch/LICENSE for license information.
|
||
|
|
||
|
from __future__ import print_function
|
||
|
import argparse
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import torch.optim as optim
|
||
|
from torchvision import datasets, transforms
|
||
|
from torch.optim.lr_scheduler import StepLR
|
||
|
|
||
|
import npcomp.frontends.pytorch as torch_mlir
|
||
|
import npcomp.frontends.pytorch.test as test
|
||
|
|
||
|
# RUN: python %s | FileCheck %s
|
||
|
|
||
|
class Net(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Net, self).__init__()
|
||
|
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
||
|
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
||
|
self.maxpool2d = nn.MaxPool2d(2,2)
|
||
|
#self.dropout1 = nn.Dropout2d(0.25)
|
||
|
#self.dropout2 = nn.Dropout2d(0.5)
|
||
|
self.fc1 = nn.Linear(9216, 128)
|
||
|
self.fc2 = nn.Linear(128, 10)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv1(x)
|
||
|
x = F.relu(x)
|
||
|
x = self.conv2(x)
|
||
|
x = self.maxpool2d(x)
|
||
|
#x = self.dropout1(x)
|
||
|
x = x.view((4,9216))
|
||
|
x = self.fc1(x)
|
||
|
x = F.relu(x)
|
||
|
#x = self.dropout2(x)
|
||
|
x = self.fc2(x)
|
||
|
output = F.log_softmax(x, dim=1)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def main():
|
||
|
model = Net()
|
||
|
tensor = torch.randn((4, 1, 28, 28))
|
||
|
|
||
|
# CHECK: PASS! fwd check
|
||
|
fwd_path = test.check_fwd(model, tensor)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|