torch-mlir/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp

1135 lines
50 KiB
C++
Raw Normal View History

//===------------------------------------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h"
#include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::onnx_c;
// Simple rewrites for the default domain.
// See: https://onnx.ai/onnx/operators/
// For operators that are effectively version invariant, we register with
// sinceVersion==1. We interpret this to include the following spec
// diffs that are irrelevant to this level of lowering:
// * Supported element types.
// * Limited broadcasting to full broadcasting support.
//
// There are a lot of spec revisions that basically generalized elementwise
// to be more normal and a direct translation vs a special case. This
// results in a lot of ONNX test cases that all reduce to the exact same
// thing here, so we simplify.
void mlir::torch::onnx_c::populateDefaultDomainGtoP(
OnnxCustomOpConversionPattern &patterns) {
patterns.onOp(
"HardSigmoid", 6,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value tensorOperand;
float alpha, beta;
if (binder.tensorOperand(tensorOperand) ||
binder.f32FloatAttr(alpha, "alpha", 0.2f) ||
binder.f32FloatAttr(beta, "beta", 0.5f) ||
binder.tensorResultType(resultType))
return failure();
// HardSigmoid computes the following expression:
// max(0, min(1, alpha * x + beta))
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(alpha));
Value constBeta = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(beta));
// Expression: alpha * x + beta
Value alpha_x_plus_beta = rewriter.create<Torch::AtenAddScalarOp>(
binder.getLoc(), resultType, tensorOperand, constBeta,
/*alpha=*/constAlpha);
// Expression: min(1, alpha * x + beta)
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
Value oneTensor = createRank0Tensor(rewriter, binder.getLoc(),
resultType, constantOne);
Value minExpression = rewriter.create<Torch::AtenMinimumOp>(
binder.getLoc(), resultType, oneTensor, alpha_x_plus_beta);
// Expression: max(0, min(1, alpha * x + beta))
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
Value zeroTensor = createRank0Tensor(rewriter, binder.getLoc(),
resultType, constantZero);
rewriter.replaceOpWithNewOp<Torch::AtenMaximumOp>(
binder.op, resultType, zeroTensor, minExpression);
return success();
});
patterns.onOp(
"Gelu", 20, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value operand;
Torch::ValueTensorType resultType;
std::string approximate;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType) ||
binder.customOpNameStringAttr(approximate, "approximate", "none"))
return failure();
Value vApproximate = rewriter.create<Torch::ConstantStrOp>(
binder.getLoc(), rewriter.getType<Torch::StringType>(),
rewriter.getStringAttr(approximate));
rewriter.replaceOpWithNewOp<Torch::AtenGeluOp>(binder.op, resultType,
operand, vApproximate);
return success();
});
patterns.onOp(
"GridSample", 20,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
Value grid;
if (binder.tensorOperandAtIndex(input, 0) ||
binder.tensorOperandAtIndex(grid, 1) ||
binder.tensorResultType(resultType))
return rewriter.notifyMatchFailure(
binder.op, "operand grid_sampler bind failure");
auto inputTensorType = input.getType().cast<Torch::ValueTensorType>();
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
uint32_t inputRank = inputShape.size();
auto gridTensorType = grid.getType().cast<Torch::ValueTensorType>();
ArrayRef<int64_t> gridShape = gridTensorType.getSizes();
uint32_t gridRank = gridShape.size();
if (inputRank != 4)
return rewriter.notifyMatchFailure(binder.op,
"only input rank 4 supported");
if (gridRank != 4)
return rewriter.notifyMatchFailure(binder.op,
"only grid rank 4 supported");
if (inputShape[0] != gridShape[0])
return rewriter.notifyMatchFailure(
binder.op, "N must be same for input and grid");
if (gridShape[3] != 2)
return rewriter.notifyMatchFailure(binder.op,
"gridShape[3] expected to be 2");
std::string mode;
if (binder.customOpNameStringAttr(mode, "mode", "bilinear"))
return rewriter.notifyMatchFailure(binder.op, "mode bind failure");
if (mode != "bilinear")
return rewriter.notifyMatchFailure(
binder.op, "currently only mode : bilinear supported");
std::string padding;
if (binder.customOpNameStringAttr(padding, "padding_mode", "zeros"))
return rewriter.notifyMatchFailure(binder.op,
"padding_mode bind failure");
if (padding != "zeros")
return rewriter.notifyMatchFailure(
binder.op, "currently only padding_mode : zeros supported");
int64_t align;
if (binder.s64IntegerAttr(align, "align_corners", 0))
return rewriter.notifyMatchFailure(binder.op,
"align_corners bind failure");
if (align != 0)
return rewriter.notifyMatchFailure(
binder.op, "currently only align_corners : 0 supported");
Value interpolationMode = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
Value paddingMode = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
Value alignCorners = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
rewriter.getBoolAttr(false));
rewriter.replaceOpWithNewOp<Torch::AtenGridSamplerOp>(
binder.op, resultType, input, grid, interpolationMode, paddingMode,
alignCorners);
return success();
});
patterns.onOp("Less", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenLtTensorOp>(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp("LessOrEqual", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenLeTensorOp>(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp("Log", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenLogOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("MatMul", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenMatmulOp>(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp(
"MatMulInteger", 10,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs, lhsZp, rhsZp;
if (binder.tensorOperandAtIndex(lhs, 0) ||
binder.tensorOperandAtIndex(rhs, 1) ||
binder.tensorResultType(resultType))
return failure();
if (binder.tensorOperandAtIndex(lhsZp, 2)) {
lhsZp = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
}
if (binder.tensorOperandAtIndex(rhsZp, 3)) {
rhsZp = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
}
auto lhsTy = dyn_cast<Torch::ValueTensorType>(lhs.getType());
auto rhsTy = dyn_cast<Torch::ValueTensorType>(rhs.getType());
if (auto zpTy = dyn_cast<Torch::ValueTensorType>(lhsZp.getType())) {
for (auto dim : zpTy.getSizes())
if (dim != 1)
return failure();
lhsZp = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), lhsZp);
}
if (auto zpTy = dyn_cast<Torch::ValueTensorType>(rhsZp.getType())) {
for (auto dim : zpTy.getSizes())
if (dim != 1)
return failure();
rhsZp = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), rhsZp);
}
Value scale = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(1.0));
auto q = [&](Type qty) -> Type {
if (qty.isSignedInteger(8))
return rewriter.getType<Torch::QInt8Type>();
if (qty.isUnsignedInteger(8))
return rewriter.getType<Torch::QUInt8Type>();
if (qty.isSignedInteger(32))
return rewriter.getType<Torch::QInt32Type>();
return {};
};
Type lhsQTy = rewriter.getType<Torch::ValueTensorType>(
lhsTy.getOptionalSizes(), q(lhsTy.getDtype()));
Type rhsQTy = rewriter.getType<Torch::ValueTensorType>(
rhsTy.getOptionalSizes(), q(rhsTy.getDtype()));
lhs = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
binder.getLoc(), lhsQTy, lhs, scale, lhsZp);
rhs = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
binder.getLoc(), rhsQTy, rhs, scale, rhsZp);
rewriter.replaceOpWithNewOp<Torch::AtenMmOp>(binder.op, resultType, lhs,
rhs);
return success();
});
patterns.onOp("Mul", 7,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenMulTensorOp>(
binder.op, resultType, lhs, rhs);
return success();
});
2024-01-19 09:23:13 +08:00
patterns.onOp("NonZero", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
2024-01-19 09:23:13 +08:00
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenNonzeroOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"MaxPool", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
std::string autoPad;
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
return rewriter.notifyMatchFailure(binder.op,
"auto_pad bind failure");
if (autoPad != "NOTSET")
return rewriter.notifyMatchFailure(
binder.op, "unsupported conversion: auto_pad != NOTSET");
Torch::ValueTensorType resultType;
Value operand;
bool ceilMode;
int64_t storageOrder;
// TODO: Add support for indices output and storage_order
if (binder.tensorOperand(operand) ||
binder.s64BoolAttr(ceilMode, "ceil_mode", false) ||
binder.s64IntegerAttr(storageOrder, "storage_order", 0) ||
binder.tensorResultType(resultType))
return rewriter.notifyMatchFailure(
binder.op,
"operand/ceil_mode/storage_order/resultType bind failure");
if (storageOrder != 0)
return rewriter.notifyMatchFailure(
binder.op, "storage_order setting is not supported.");
// Determine the rank of input tensor.
std::optional<unsigned> maybeRank = Torch::getTensorRank(operand);
if (!maybeRank)
return rewriter.notifyMatchFailure(binder.op,
"Unimplemented: unranked tensor");
int64_t rank = *maybeRank;
int64_t spatial = rank - 2;
SmallVector<int64_t> kernel, padding, strides, dilations;
if (binder.s64IntegerArrayAttr(kernel, "kernel_shape", {}))
return rewriter.notifyMatchFailure(binder.op,
"kernel_shape bind failure");
if (kernel.size() != static_cast<size_t>(spatial))
return rewriter.notifyMatchFailure(
binder.op, "kernel list size does not match the number of axes");
if (binder.s64IntegerArrayAttr(padding, "pads", {}))
return rewriter.notifyMatchFailure(binder.op, "pads bind failure");
if (!padding.empty() &&
padding.size() != static_cast<size_t>(2 * spatial))
return rewriter.notifyMatchFailure(
binder.op, "padding list must contain (begin,end) pair for each "
"spatial axis");
if (binder.s64IntegerArrayAttr(strides, "strides", {}))
return rewriter.notifyMatchFailure(binder.op, "strides bind failure");
if (!strides.empty() && strides.size() != static_cast<size_t>(spatial))
return rewriter.notifyMatchFailure(
binder.op, "strides list size does not match the number of axes");
if (binder.s64IntegerArrayAttr(dilations, "dilations", {}))
return rewriter.notifyMatchFailure(binder.op,
"dilations bind failure");
if (padding.empty())
padding.resize(spatial, 0);
if (strides.empty())
strides.resize(spatial, 1);
if (dilations.empty())
dilations.resize(spatial, 1);
// If the padding is symmetric we can push the padding operation to the
// torch operator.
if (padding.size() == static_cast<size_t>(2 * spatial)) {
bool equal = true;
for (int i = 0; i < spatial; ++i) {
equal = equal && (padding[i] == padding[i + spatial]);
}
if (equal)
padding.resize(spatial);
}
// Torch pool operators require equal padding on each size of each
// dimension so we materialize the padding behavior explicitly and set
// the padding to 0.
if (padding.size() == static_cast<size_t>(2 * spatial)) {
auto operandTy = cast<Torch::ValueTensorType>(operand.getType());
llvm::SmallVector<int64_t> shuffledPadding(spatial * 2);
llvm::SmallVector<int64_t> paddedShape(operandTy.getSizes());
shuffledPadding.resize(2 * rank);
for (int i = 0; i < spatial; ++i) {
paddedShape[i + 2] += padding[i] + padding[i + spatial];
shuffledPadding[2 * i] = padding[i];
shuffledPadding[2 * i + 1] = padding[i + spatial];
}
Value shuffledPaddingList =
createConstantIntList(binder, rewriter, padding);
Value zero;
if (resultType.getDtype().isa<FloatType>()) {
zero = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(
std::numeric_limits<double>::lowest()));
} else if (resultType.getDtype().isa<IntegerType>()) {
zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(
std::numeric_limits<int64_t>::lowest()));
}
auto paddedInputTy = rewriter.getType<Torch::ValueTensorType>(
paddedShape, operandTy.getDtype());
operand = rewriter.create<Torch::AtenConstantPadNdOp>(
binder.getLoc(), paddedInputTy, operand, shuffledPaddingList,
zero);
padding.clear();
padding.resize(spatial, 0);
}
Value kernelSizeList = createConstantIntList(binder, rewriter, kernel);
Value paddingList = createConstantIntList(binder, rewriter, padding);
Value stridesList = createConstantIntList(binder, rewriter, strides);
Value dilationsList =
createConstantIntList(binder, rewriter, dilations);
Value cstCeilMode =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), ceilMode);
if (rank == 3)
return rewriter.notifyMatchFailure(binder.op,
"Unimplemented: AtenMaxPool1dOp");
if (rank == 4) {
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool2dOp>(
binder.op, resultType, operand, kernelSizeList, stridesList,
paddingList, dilationsList, cstCeilMode);
return success();
}
if (rank == 5) {
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool3dOp>(
binder.op, resultType, operand, kernelSizeList, stridesList,
paddingList, dilationsList, cstCeilMode);
return success();
}
return rewriter.notifyMatchFailure(binder.op, "No rank is matched.");
});
patterns.onOp("Greater", 16,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
std::string direction;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenGtTensorOp>(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp("GreaterOrEqual", 16,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
std::string direction;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenGeTensorOp>(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp(
"InstanceNormalization", 6,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
float eps;
if (binder.tensorOperands(operands, 3) ||
binder.tensorResultType(resultType) || operands.size() != 3 ||
binder.f32FloatAttr(eps, "epsilon", 1e-05f)) {
return failure();
}
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value boolTrue =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
Value boolFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
auto epsValue = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getF64FloatAttr(eps));
auto momentum = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getF64FloatAttr(0.0f));
rewriter.replaceOpWithNewOp<Torch::AtenInstanceNormOp>(
binder.op, resultType, /* input */ operands[0],
/* weight */ operands[1],
/* bias */ operands[2], /* running mean */ none,
/* running var */ none,
/* use input stats */ boolTrue, momentum, epsValue,
/* cudnn enabled */ boolFalse);
return success();
});
patterns.onOp(
"Max", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
if (binder.tensorOperandsList(operands) ||
binder.tensorResultType(resultType) || operands.size() == 0) {
return failure();
}
Value result = operands[0];
for (uint64_t i = 1; i < operands.size(); i++) {
result = rewriter.create<Torch::AtenMaximumOp>(
binder.getLoc(), resultType, result, operands[i]);
}
rewriter.replaceOp(binder.op, result.getDefiningOp());
return success();
});
patterns.onOp(
"Min", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
if (binder.tensorOperandsList(operands) ||
binder.tensorResultType(resultType) || operands.size() == 0) {
return failure();
}
Value result = operands[0];
for (uint64_t i = 1; i < operands.size(); i++) {
result = rewriter.create<Torch::AtenMinimumOp>(
binder.getLoc(), resultType, result, operands[i]);
}
rewriter.replaceOp(binder.op, result.getDefiningOp());
return success();
});
patterns.onOp("Neg", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenNegOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("Not", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseNotOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("Or", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseOrTensorOp>(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp(
"Gather", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data, indices;
int64_t axis;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorOperandAtIndex(indices, 1) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(axis, "axis", 0))
return failure();
Location loc = binder.getLoc();
auto ctx = binder.op->getContext();
auto indicesTy = cast<Torch::ValueTensorType>(indices.getType());
auto dataTy = cast<Torch::ValueTensorType>(data.getType());
if (!dataTy || !dataTy.hasSizes())
return failure();
if (axis < 0)
axis += dataTy.getSizes().size();
Value index = rewriter.create<Torch::ConstantIntOp>(
loc, Torch::IntType::get(ctx), rewriter.getI64IntegerAttr(axis));
// Apply bounds checking on the input:
auto intTy = rewriter.getType<Torch::IntType>();
auto boolTy = rewriter.getType<Torch::ValueTensorType>(
indicesTy.getSizes(), rewriter.getI1Type());
Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, intTy, rewriter.getI64IntegerAttr(0));
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, intTy, rewriter.getI64IntegerAttr(1));
Value lt =
rewriter.create<Torch::AtenLeScalarOp>(loc, boolTy, indices, zero);
Value dim =
rewriter.create<Torch::AtenSizeIntOp>(loc, intTy, data, index);
Value add = rewriter.create<Torch::AtenAddScalarOp>(loc, indicesTy,
indices, dim, one);
indices = rewriter.create<Torch::AtenWhereSelfOp>(loc, indicesTy, lt,
add, indices);
auto intListTy = rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::IntType>());
auto indicesSize =
rewriter.create<Torch::AtenSizeOp>(loc, intListTy, indices);
// Determine the collapsed dim size:
auto indicesCt = 1;
for (auto sz : indicesTy.getSizes()) {
if (sz == Torch::kUnknownSize) {
indicesCt = Torch::kUnknownSize;
break;
}
indicesCt *= sz;
}
auto flattenTy = rewriter.getType<Torch::ValueTensorType>(
SmallVector<int64_t>{indicesCt}, indicesTy.getOptionalDtype());
Value rank = rewriter.create<Torch::AtenDimOp>(loc, intTy, indices);
Value end = rewriter.create<Torch::AtenSubIntOp>(loc, rank, one);
indices = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenTy, indices, zero, end);
llvm::SmallVector<int64_t> gatherShape(dataTy.getSizes());
gatherShape[axis] = indicesCt;
auto gatherTy = rewriter.getType<Torch::ValueTensorType>(
gatherShape, dataTy.getOptionalDtype());
Value gather = rewriter.create<Torch::AtenIndexSelectOp>(
loc, gatherTy, data, index, indices);
rewriter.replaceOpWithNewOp<Torch::AtenUnflattenIntOp>(
binder.op, resultType, gather, index, indicesSize);
return success();
});
patterns.onOp(
"GatherElements", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data, indices;
int64_t axis;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorOperandAtIndex(indices, 1) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(axis, "axis", 0))
return failure();
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
Value sparseGrad = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
rewriter.getBoolAttr(false));
rewriter.replaceOpWithNewOp<Torch::AtenGatherOp>(
binder.op, resultType, data, constAxis, indices, sparseGrad);
return success();
});
patterns.onOp(
"Gemm", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value a, b, c;
float alpha, beta;
int64_t transA, transB;
if (binder.tensorOperandAtIndex(a, 0) ||
binder.tensorOperandAtIndex(b, 1) ||
binder.tensorOperandAtIndex(c, 2) ||
binder.s64IntegerAttr(transA, "transA", 0) ||
binder.s64IntegerAttr(transB, "transB", 0) ||
binder.f32FloatAttr(alpha, "alpha", 1.0f) ||
binder.f32FloatAttr(beta, "beta", 1.0f) ||
binder.tensorResultType(resultType))
return failure();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
Value one = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
auto transpose = [&](Value m) -> Value {
auto tty = m.getType().cast<Torch::ValueTensorType>();
auto shape = tty.getOptionalSizes();
if (shape.has_value()) {
llvm::SmallVector<int64_t> newShape(shape.value());
std::reverse(newShape.begin(), newShape.end());
shape = std::move(newShape);
}
auto oty = Torch::ValueTensorType::get(tty.getContext(), shape,
tty.getOptionalDtype());
return rewriter.create<Torch::AtenTransposeIntOp>(binder.getLoc(),
oty, m, zero, one);
};
if (transA) {
a = transpose(a);
}
if (transB) {
b = transpose(b);
}
Value mm =
rewriter.create<Torch::AtenMmOp>(binder.getLoc(), resultType, a, b);
if (alpha == 1.0 && beta == 1.0) {
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
binder.op, resultType, mm, c, one);
return success();
}
if (alpha != 1.0 && beta != 1.0) {
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(alpha));
mm = rewriter.create<Torch::AtenMulScalarOp>(
binder.getLoc(), resultType, mm, constAlpha);
alpha = 1.0;
}
if (alpha != 1.0) {
std::swap(alpha, beta);
std::swap(mm, c);
}
Value constBeta = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(beta));
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
binder.op, resultType, mm, c, constBeta);
return success();
});
patterns.onOp(
"GlobalAveragePool", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
auto inputTensorType = operand.getType().cast<Torch::ValueTensorType>();
if (!inputTensorType || !inputTensorType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected input type having sizes");
}
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
unsigned inputRank = inputShape.size();
if (!resultType || !resultType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected result type having sizes");
}
ArrayRef<int64_t> resultShape = resultType.getSizes();
SmallVector<Value> cstKernel, cstPadding, cstStrides;
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
for (unsigned i = 2; i < inputRank; i++) {
int64_t kernelSize = inputShape[i] - resultShape[i] + 1;
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(kernelSize)));
cstPadding.push_back(cstZero);
cstStrides.push_back(cstOne);
}
Value kernelSizeList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
cstKernel);
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
cstPadding);
Value stridesList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
cstStrides);
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
Value cstCeilMode = cstFalse;
Value cstCountIncludePad = cstFalse;
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
if (inputRank == 3) {
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool1dOp>(
binder.op, resultType, operand, kernelSizeList, stridesList,
paddingList, cstCeilMode, cstCountIncludePad);
return success();
} else if (inputRank == 4) {
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool2dOp>(
binder.op, resultType, operand, kernelSizeList, stridesList,
paddingList, cstCeilMode, cstCountIncludePad,
/*divisor_override=*/cstNone);
return success();
} else if (inputRank == 5) {
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool3dOp>(
binder.op, resultType, operand, kernelSizeList, stridesList,
paddingList, cstCeilMode, cstCountIncludePad,
/*divisor_override=*/cstNone);
return success();
}
return failure();
});
patterns.onOp(
"LayerNormalization", 17,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType yType, meanType, invStdDevType;
Value x, scale, b;
int64_t axis, stashType;
float epsilon;
if (binder.tensorOperandAtIndex(x, 0) ||
binder.tensorOperandAtIndex(scale, 1) ||
binder.tensorOperandAtIndex(b, 2) ||
binder.tensorResultTypeAtIndex(yType, 0) ||
binder.s64IntegerAttr(axis, "axis", -1) ||
binder.f32FloatAttr(epsilon, "epsilon", 0.00001f) ||
binder.s64IntegerAttr(stashType, "stash_type", 1))
return failure();
Value constEpsilon = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(epsilon));
unsigned rank = 1;
if (std::optional<unsigned> maybeRank = Torch::getTensorRank(x))
rank = *maybeRank;
SmallVector<Value> normalized;
axis = Torch::toPositiveDim(axis, rank);
auto xType = x.getType().cast<Torch::ValueTensorType>();
if (!xType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected input (X) to have sizes");
}
ArrayRef<int64_t> xShape = xType.getSizes();
for (int64_t n = axis; n < rank; n++) {
normalized.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(xShape[n])));
}
Value normalized_shape = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
normalized);
int64_t numResults = binder.op->getNumResults();
if (numResults == 1) {
SmallVector<int64_t> reducedShape(rank, 1);
for (int64_t i = 0; i < axis; i++)
reducedShape[i] = xShape[i];
auto reducedType = xType.getWithSizesAndDtype(
reducedShape, xType.getOptionalDtype());
Value y = rewriter
.create<Torch::AtenNativeLayerNormOp>(
binder.getLoc(), yType, /*meanType=*/reducedType,
/*invStdDevType=*/reducedType, x, normalized_shape,
scale, b, constEpsilon)
.getResult0();
rewriter.replaceOp(binder.op, y);
return success();
}
if (numResults == 3) {
if (binder.tensorResultTypeAtIndex(meanType, 1) ||
binder.tensorResultTypeAtIndex(invStdDevType, 2))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenNativeLayerNormOp>(
binder.op, yType, meanType, invStdDevType, x, normalized_shape,
scale, b, constEpsilon);
return success();
}
return rewriter.notifyMatchFailure(
binder.op, "Unimplemented: expected either 1 or 3 results");
});
patterns.onOp("LeakyRelu", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
float alpha;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType) ||
binder.f32FloatAttr(alpha, "alpha", 0.01f))
return failure();
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(alpha));
rewriter.replaceOpWithNewOp<Torch::AtenLeakyReluOp>(
binder.op, resultType, operand, constAlpha);
return success();
});
patterns.onOp(
"Pad", 19, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
onnx: fix checks in TorchOnnxToTorch pass to match the ONNX spec (#2848) This PR contains three commits to update the validation checks in the ONNX -> Torch conversion pass for the AveragePool, Pad, and Slice operators: > onnx: fix preconditions for lowering AveragePool ops > > The `pads` attribute of the AveragePool operator specifies the value to > pad at both the beginning as well as the end of the axis (see > https://onnx.ai/onnx/operators/onnx__AveragePool.html#attributes), so > the size of this attribute should be twice the rank of the input tensor. > However, our TorchOnnxToTorch bails out early since it incorrectly > compares the pads attribute with the rank (not twice the rank) of the > input tensor. > > This patch fixes the code to match the spec and adds a lit test. > onnx: allow optional constant value for Pad operator > > The `constant_value` input of the onnx.Pad operator is optional (see > https://onnx.ai/onnx/operators/onnx__Pad.html#inputs), but the existing > logic for lowering the operator into the Torch dialect assumes that it > is mandatory. > > This patch makes the attribute optional and constructs a default value > (a list of zeros the size of the input tensor) if the attribute was not > specified. > onnx: fix checks for axes and steps inputs of Slice operator > > The ONNX Spec for the Slice operator allows the `starts` and `ends` > inputs to have fewer indices that the dimensions of the `data` tensor > (see https://onnx.ai/onnx/operators/onnx__Slice.html), but our code > expects these inputs to be as many as the `data` tensor's dimensions. > > More precisely, the spec requires that the `starts` and `ends` inputs > are only as long as the `axes` input, but since the `axes` input is > optional, the default type for the `axes` input has to match the type > for the `starts` and `ends` inputs. Moreover, the number of indices in > the `steps` input also has to match those in the `axes` inputs (instad > of matching the dimensions of the `data` input). > > This patch fixes the checks in the TorchOnnxToTorch conversion so that > they match the ONNX spec.
2024-02-08 13:19:27 +08:00
Value data, pads, axes;
std::string mode;
// TODO: The `axes` parameter is not supported yet.
if (!binder.tensorOperandAtIndex(axes, 3)) {
return rewriter.notifyMatchFailure(
binder.op, "The axes parameter is not supported yet");
}
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorOperandAtIndex(pads, 1) ||
binder.tensorResultType(resultType) ||
binder.customOpNameStringAttr(mode, "mode", "constant"))
return failure();
Location loc = binder.getLoc();
onnx: fix checks in TorchOnnxToTorch pass to match the ONNX spec (#2848) This PR contains three commits to update the validation checks in the ONNX -> Torch conversion pass for the AveragePool, Pad, and Slice operators: > onnx: fix preconditions for lowering AveragePool ops > > The `pads` attribute of the AveragePool operator specifies the value to > pad at both the beginning as well as the end of the axis (see > https://onnx.ai/onnx/operators/onnx__AveragePool.html#attributes), so > the size of this attribute should be twice the rank of the input tensor. > However, our TorchOnnxToTorch bails out early since it incorrectly > compares the pads attribute with the rank (not twice the rank) of the > input tensor. > > This patch fixes the code to match the spec and adds a lit test. > onnx: allow optional constant value for Pad operator > > The `constant_value` input of the onnx.Pad operator is optional (see > https://onnx.ai/onnx/operators/onnx__Pad.html#inputs), but the existing > logic for lowering the operator into the Torch dialect assumes that it > is mandatory. > > This patch makes the attribute optional and constructs a default value > (a list of zeros the size of the input tensor) if the attribute was not > specified. > onnx: fix checks for axes and steps inputs of Slice operator > > The ONNX Spec for the Slice operator allows the `starts` and `ends` > inputs to have fewer indices that the dimensions of the `data` tensor > (see https://onnx.ai/onnx/operators/onnx__Slice.html), but our code > expects these inputs to be as many as the `data` tensor's dimensions. > > More precisely, the spec requires that the `starts` and `ends` inputs > are only as long as the `axes` input, but since the `axes` input is > optional, the default type for the `axes` input has to match the type > for the `starts` and `ends` inputs. Moreover, the number of indices in > the `steps` input also has to match those in the `axes` inputs (instad > of matching the dimensions of the `data` input). > > This patch fixes the checks in the TorchOnnxToTorch conversion so that > they match the ONNX spec.
2024-02-08 13:19:27 +08:00
Value constantValue;
if (binder.getNumOperands() >= 3) {
if (binder.tensorOperandAtIndex(constantValue, 2)) {
llvm::errs() << "failed to bind to index 2\n";
return failure();
}
} else {
auto dataTensorType = data.getType().cast<Torch::ValueTensorType>();
auto maybeZeroAttr = [&]() -> std::optional<Attribute> {
if (dataTensorType.getDtype().isa<IntegerType>()) {
return rewriter.getI64IntegerAttr(0);
}
if (dataTensorType.getDtype().isa<FloatType>()) {
return rewriter.getFloatAttr(dataTensorType.getDtype(), 0.0f);
}
return std::nullopt;
}();
if (!maybeZeroAttr) {
return rewriter.notifyMatchFailure(
binder.op, "expected integer or float data tensor");
}
auto shapedType = dataTensorType.toBuiltinTensor();
auto splat = SplatElementsAttr::get(shapedType, *maybeZeroAttr);
constantValue = rewriter.create<Torch::ValueTensorLiteralOp>(
loc, dataTensorType, splat);
}
// Get pads shape and rank. The pads tensor is expected to be 1-D
// tensor.
auto padsTensorType = pads.getType().cast<Torch::ValueTensorType>();
if (!padsTensorType || !padsTensorType.hasSizes()) {
return rewriter.notifyMatchFailure(binder.op,
"Expect non empty pad tensor");
}
ArrayRef<int64_t> padsShape = padsTensorType.getSizes();
int64_t padsRank = padsShape.size();
if (padsRank != 1) {
return rewriter.notifyMatchFailure(binder.op,
"Expect 1-D pad tensor");
}
// Extract all the values of 1-D pad tensor and create a list of all
// these values as torch.pad op expects pad list.
int64_t padsSize = padsShape[0];
Value constZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
SmallVector<Value> padsTensorValue;
SmallVector<int64_t> emptyShape;
Type padsElemType =
Torch::ValueTensorType::get(padsTensorType.getContext(), emptyShape,
padsTensorType.getOptionalDtype());
for (uint32_t i = 0; i < padsSize; ++i) {
Value index = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
padsTensorValue.emplace_back(rewriter.create<Torch::AtenSelectIntOp>(
loc, padsElemType, pads, constZero, index));
}
// The torch.pad op expects a different arrangement of padding pairs for
// each dimension as compared to the onnx.pad op. So, rearranging pad
// tensor to satisfy torch.pad op semantics.
SmallVector<Value> padsRearrange;
for (uint32_t i = 0; i < padsSize / 2; i++) {
padsRearrange.emplace_back(padsTensorValue[(padsSize / 2) - 1 - i]);
padsRearrange.emplace_back(padsTensorValue[padsSize - 1 - i]);
}
Value padsSizeList =
rewriter
.create<Torch::PrimTolistOp>(
loc,
Torch::ListType::get(rewriter.getType<Torch::IntType>()),
padsRearrange)
.getResult(0);
Value modeVal = rewriter.create<Torch::ConstantStrOp>(
loc, rewriter.getStringAttr(mode));
// The constant value is a 0-d tensor, which needs to be converted to a
// float scalar as torch.pad op expects a float scalar.
auto constValueType =
constantValue.getType().cast<Torch::ValueTensorType>();
if (!constValueType) {
return rewriter.notifyMatchFailure(binder.op,
"Expect non-none constant value");
}
auto resultTensorType = Torch::ValueTensorType::get(
constValueType.getContext(), emptyShape, rewriter.getF64Type());
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value constFloatValue = rewriter.create<Torch::AtenToDtypeOp>(
loc, resultTensorType, constantValue,
Torch::getDtypeIntValueForType(rewriter, loc,
resultTensorType.getOptionalDtype()),
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
/*memory_format=*/none);
Value constScalar = rewriter.create<Torch::AtenItemOp>(
loc, rewriter.getType<Torch::FloatType>(), constFloatValue);
rewriter.replaceOpWithNewOp<Torch::AtenPadOp>(
binder.op, resultType, data, padsSizeList, modeVal, constScalar);
return success();
});
2023-12-28 01:34:48 +08:00
patterns.onOp("Pow", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value lhs, rhs;
if (binder.tensorOperands(lhs, rhs) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenPowTensorTensorOp>(
binder.op, resultType, lhs, rhs);
2023-12-28 01:34:48 +08:00
return success();
});
patterns.onOp(
"Identity", 14, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value tensor;
if (binder.tensorOperand(tensor) ||
binder.tensorResultType(resultType)) {
return failure();
}
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenCloneOp>(
binder.op, resultType, tensor, /*memory_format=*/noneVal);
return success();
});
patterns.onOp(
"Mean", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
if (binder.op->getNumOperands() == 1) {
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOp(binder.op, x);
return success();
}
Torch::ValueTensorType resultType;
SmallVector<Value> valList;
int64_t numOperands = binder.op->getNumOperands();
Value numOperandsConstant = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), numOperands));
if (binder.tensorOperands(valList, numOperands) ||
binder.tensorResultType(resultType))
return failure();
Value constOne = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
// Short circuit to binary add
Value curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), resultType, valList[0], valList[1], constOne);
if (numOperands == 2) {
rewriter.replaceOpWithNewOp<Torch::AtenDivScalarOp>(
binder.op, resultType, curr, numOperandsConstant);
return success();
}
// When binder.op->getNumOperands() > 2
auto baseType = Torch::ValueTensorType::getWithLeastStaticInformation(
binder.op->getContext());
for (int i = 2; i < numOperands; i++) {
if (i == numOperands - 1) {
curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), resultType, curr, valList[i], constOne);
} else {
curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), baseType, curr, valList[i], constOne);
}
}
rewriter.replaceOpWithNewOp<Torch::AtenDivScalarOp>(
binder.op, resultType, curr, numOperandsConstant);
return success();
});
patterns.onOp(
"IsInf", 10, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value tensor;
int64_t neg;
int64_t pos;
if (binder.tensorOperand(tensor) ||
binder.s64IntegerAttr(neg, "detect_negative", 1) ||
binder.s64IntegerAttr(pos, "detect_positive", 1) ||
binder.tensorResultType(resultType)) {
return failure();
}
if (neg == 0) {
// replace all negative infs with 0
tensor = rewriter.create<Torch::AtenReluOp>(
binder.getLoc(),
dyn_cast<Torch::ValueTensorType>(tensor.getType()), tensor);
}
if (pos == 0) {
// first use neg op to flip positive inf to negative inf. Then relu to
// replace all positive infs with 0.
Value flip = rewriter.create<Torch::AtenNegOp>(
binder.getLoc(),
dyn_cast<Torch::ValueTensorType>(tensor.getType()), tensor);
tensor = rewriter.create<Torch::AtenReluOp>(
binder.getLoc(), dyn_cast<Torch::ValueTensorType>(flip.getType()),
flip);
}
rewriter.replaceOpWithNewOp<Torch::AtenIsinfOp>(binder.op, resultType,
tensor);
return success();
});
patterns.onOp("IsNaN", 9,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value tensor;
if (binder.tensorOperand(tensor) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenIsnanOp>(
binder.op, resultType, tensor);
return success();
});
patterns.onOp("PRelu", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value tensor;
Value slope;
if (binder.tensorOperands(tensor, slope) ||
binder.tensorResultType(resultType)) {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::AtenPreluOp>(
binder.op, resultType, tensor, slope);
return success();
});
2023-12-28 01:34:48 +08:00
}