mirror of https://github.com/llvm/torch-mlir
104 lines
3.5 KiB
C++
104 lines
3.5 KiB
C++
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
// Also available under a BSD-style license. See LICENSE.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "PassDetail.h"
|
||
|
|
||
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
||
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
||
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
||
|
|
||
|
using namespace mlir;
|
||
|
using namespace mlir::torch;
|
||
|
using namespace mlir::torch::Torch;
|
||
|
|
||
|
namespace {
|
||
|
class RecomposeSliceCopy_ : public OpRewritePattern<AtenCopy_Op> {
|
||
|
public:
|
||
|
using OpRewritePattern::OpRewritePattern;
|
||
|
LogicalResult matchAndRewrite(AtenCopy_Op op,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
if (!op.getSelf().getDefiningOp() ||
|
||
|
!isa<AtenSliceTensorOp>(op.getSelf().getDefiningOp()))
|
||
|
return failure();
|
||
|
auto sliceOp = cast<AtenSliceTensorOp>(op.getSelf().getDefiningOp());
|
||
|
|
||
|
// Get indices
|
||
|
int64_t dim;
|
||
|
if (!matchPattern(sliceOp.getDim(), m_TorchConstantInt(&dim)))
|
||
|
return failure();
|
||
|
int64_t end;
|
||
|
if (!matchPattern(sliceOp.getEnd(), m_TorchConstantInt(&end)))
|
||
|
return failure();
|
||
|
|
||
|
Value newEnd = sliceOp.getEnd();
|
||
|
if (end < 0) {
|
||
|
Value dimSize = rewriter.create<AtenSizeIntOp>(
|
||
|
op.getLoc(), sliceOp.getSelf(), sliceOp.getDim());
|
||
|
newEnd =
|
||
|
rewriter.create<AtenAddIntOp>(op.getLoc(), dimSize, sliceOp.getEnd());
|
||
|
}
|
||
|
|
||
|
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
|
||
|
Value falseVal = rewriter.create<ConstantBoolOp>(op.getLoc(), false);
|
||
|
|
||
|
// Create IndexPut_Op
|
||
|
BaseTensorType tensorType = op->getResultTypes()[0].cast<BaseTensorType>();
|
||
|
Value range = rewriter.create<AtenArangeStartStepOp>(
|
||
|
op.getLoc(), tensorType, sliceOp.getStart(), newEnd, sliceOp.getStep(),
|
||
|
/*dtype=*/noneVal, /*layout=*/noneVal, /*device=*/noneVal,
|
||
|
/*pin_memory=*/noneVal);
|
||
|
|
||
|
SmallVector<Value> indicesVector;
|
||
|
for (auto i = 0; i < dim - 1; i++)
|
||
|
indicesVector.push_back(noneVal);
|
||
|
indicesVector.push_back(range);
|
||
|
Value indices = rewriter.create<PrimListConstructOp>(
|
||
|
op.getLoc(),
|
||
|
Torch::ListType::get(op->getContext(),
|
||
|
Torch::OptionalType::get(tensorType)),
|
||
|
indicesVector);
|
||
|
|
||
|
rewriter.replaceOpWithNewOp<Aten_IndexPutImpl_Op>(
|
||
|
op, op->getResultTypes(), sliceOp.getSelf(), indices, op.getSrc(),
|
||
|
/*accumulate=*/falseVal, /*unsafe=*/falseVal);
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
namespace {
|
||
|
class RecomposeComplexOps
|
||
|
: public DecomposeComplexOpsBase<RecomposeComplexOps> {
|
||
|
public:
|
||
|
RecomposeComplexOps() = default;
|
||
|
void runOnOperation() override {
|
||
|
MLIRContext *context = &getContext();
|
||
|
RewritePatternSet patterns(context);
|
||
|
|
||
|
// pattern.add calls go here
|
||
|
patterns.add<RecomposeSliceCopy_>(context);
|
||
|
|
||
|
GreedyRewriteConfig config;
|
||
|
config.useTopDownTraversal = true;
|
||
|
config.maxIterations = GreedyRewriteConfig::kNoLimit;
|
||
|
|
||
|
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
|
||
|
config))) {
|
||
|
return signalPassFailure();
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
||
|
mlir::torch::Torch::createRecomposeComplexOps() {
|
||
|
return std::make_unique<RecomposeComplexOps>();
|
||
|
}
|