torch-mlir/projects/pt1/test/lit.cfg.py

81 lines
2.9 KiB
Python
Raw Normal View History

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
import os
import platform
import re
import subprocess
import tempfile
import lit.formats
import lit.util
from lit.llvm import llvm_config
from lit.llvm.subst import ToolSubst
from lit.llvm.subst import FindTool
# Configuration file for the 'lit' test runner.
# name: The name of this test suite.
config.name = 'TORCH_MLIR_PT1'
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
config.test_format = lit.formats.ShTest(not llvm_config.use_lit_shell)
# suffixes: A list of file extensions to treat as test files.
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
config.suffixes = ['.mlir', '.py']
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
# test_source_root: The root path where tests are located.
config.test_source_root = os.path.dirname(__file__)
# test_exec_root: The root path where tests should be run.
config.test_exec_root = os.path.join(config.torch_mlir_obj_root, 'test')
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
config.substitutions.append(('%PATH%', config.environment['PATH']))
config.substitutions.append(('%shlibext', config.llvm_shlib_ext))
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
llvm_config.with_system_environment(['HOME', 'INCLUDE', 'LIB', 'TMP', 'TEMP'])
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
#llvm_config.use_default_substitutions()
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
# excludes: A list of directories to exclude from the testsuite. The 'Inputs'
# subdirectories contain auxiliary inputs for various tests in their parent
# directories.
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
config.excludes = [
'Inputs', 'Examples', 'CMakeLists.txt', 'README.txt', 'LICENSE.txt',
'lit.cfg.py', 'lit.site.cfg.py'
]
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
# test_source_root: The root path where tests are located.
config.test_source_root = os.path.dirname(__file__)
# test_exec_root: The root path where tests should be run.
config.test_exec_root = os.path.join(config.torch_mlir_obj_root, 'test')
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
config.standalone_tools_dir = os.path.join(config.torch_mlir_obj_root, 'bin')
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
# Tweak the PATH to include the tools dir.
llvm_config.with_environment('PATH', config.llvm_tools_dir, append_path=True)
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
# Tweak the PATH to include the binary build dir, in order to pick up CAPI tests during out-of-tree.
llvm_config.with_environment('PATH', os.path.join(config.llvm_build_dir, 'bin'), append_path=True)
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
# On Windows the path to python could contains spaces in which case it needs to
# be provided in quotes. This is the equivalent of how %python is setup in
# llvm/utils/lit/lit/llvm/config.py.
if "Windows" in config.host_os:
config.python_executable = '"%s"' % (config.python_executable)
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
tool_dirs = [config.standalone_tools_dir, config.llvm_tools_dir, config.torch_mlir_obj_root]
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
tools = [
'torch-mlir-opt',
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
ToolSubst('%PYTHON', config.python_executable, unresolved='ignore'),
Add pytorch interface to ATen Dialect (#30) This patch adds a pytorch interface to npcomp. This interface is modeled after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar to a gpu device or the xla backend). Usage is intended to be something like: dev = torch_mlir.mlir_device() t0 = torch.randn((4,4), device=dev) t1 = torch.randn((4,4), device=dev) t2 = t0 + t1 t2_mlir = torch_mlir.get_mlir( t2 ) t2_cpu = t2.to('cpu') In this case t2_cpu would contain the result of the computation, and t2_mlir contains the mlir description of the computation. Note that this also properly returns backward paths synthesized by pytorch. There are several parts of this: 1) A tensor type (implemented by tensor.* and tensor_impl.*) 2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*) 3) a temporary IR (implemented by ir.cpp) There is also a reference lowering directly from the ATen dialect to C function calls consisting of two parts: 1) The driver that uses the IR to generate MLIR, run Passes and compile the result using mlir::ExecutionEngine (implemented by jit.cpp and mlir_gen.cpp) 2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations are implemented by callbacks into the torch C++ libraries. Some aspects of this are known to be less than optimal, in particular: 1) There's some function definitions that don't live in the file corresponding to their declaration. 2) More aspects of this (e.g. the IR) seem like they should be automatically generated. 3) It's unclear to me how much of the 'IR' is actually necessary, or whether MLIR could be created on the fly. Note that this code is licensed in a way similar to pytorch, with the intention that eventually (when npcomp reaches some maturity) it should be pushed there. (see frontends/pytorch/LICENSE) The code is also structured much closer to the pytorch coding style than the LLVM coding style.
2020-08-22 02:22:47 +08:00
]
llvm_config.add_tool_substitutions(tools, tool_dirs)
Re-organize project structure to separate PyTorch dependencies from core project. (#2542) This is a first step towards the structure we discussed here: https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20 There are two primary goals: 1. Separate the core project (C++ dialects and conversions) from the hard PyTorch dependencies. We move all such things into projects/pt1 as a starting point since they are presently entangled with PT1-era APIs. Additional work can be done to disentangle components from that (specifically LTC is identified as likely ultimately living in a `projects/ltc`). 2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed without needing to co-exist with the original TorchScript path. Very little changes in this path with respect to build layering or options. These can be updated in a followup without commingling directory structure changes. This also takes steps toward a couple of other layering enhancements: * Removes the llvm-external-projects/torch-mlir-dialects sub-project, collapsing it into the main tree. * Audits and fixes up the core C++ build to account for issues found while moving things. This is just an opportunistic pass through but roughly ~halves the number of build actions for the project from the high 4000's to the low 2000's. It deviates from the discussed plan by having a `projects/` tree instead of `compat/`. As I was thinking about it, this will better accommodate the follow-on code movement. Once things are roughly in place and the CI passing, followups will focus on more in-situ fixes and cleanups.
2023-11-03 10:45:55 +08:00
if config.enable_bindings_python:
llvm_config.with_environment('PYTHONPATH', [
os.path.join(config.torch_mlir_python_packages_dir, 'torch_mlir'),
],
append_path=True)